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Graphs and Time Delays
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Abstract— We analyze convergence of decentralized coopera-
tive online estimation algorithms by a network of multiple nodes
via information exchanging in an uncertain environment. Each
node has a linear observation of an unknown parameter with
randomly time-varying observation matrices. The underlying
communication network is modeled by a sequence of random
digraphs and is subjected to nonuniform random time-varying
delays in channels. Each node runs an online estimation algo-
rithm consisting of a consensus term taking a weighted sum
of its own estimate and neighbours’ delayed estimates, and
an innovation term processing its own new measurement at
each time step. By stochastic time-varying system, martingale
convergence theories and the binomial expansion of random
matrix products, we transform the convergence analysis of the
algorithm into that of the mathematical expectation of random
matrix products. Firstly, for the delay-free case, we show that
the algorithm gains can be designed properly such that all
nodes’ estimates converge to the true parameter in mean square
and almost surely if the observation matrices and communica-
tion graphs satisfy the stochastic spatio-temporal persistence of
excitation condition. Secondly, for the case with time delays,
we introduce delay matrices to model the random time-varying
communication delays between nodes. It is shown that under
the stochastic spatio-temporal persistence of excitation condition,
for any given bounded delays, proper algorithm gains can be
designed to guarantee mean square convergence for the case
with conditionally balanced digraphs.

Index Terms— Decentralized online estimation, cooperative
estimation, random graph, random time delay, persistence of
excitation.

I. INTRODUCTION

ESTIMATION algorithms have important applications in
many fields, e.g. navigation systems, space exploration,

machine learning and power systems ([1]–[4]), etc. In a power

Manuscript received August 22, 2019; revised November 17, 2020; accepted
March 22, 2021. Date of publication April 5, 2021; date of current version
May 20, 2021. This work was supported in part by the National Natural
Science Foundation of China under Grant 61977024 and in part by the Basic
Research Project of Shanghai Science and Technology Commission under
Grant 20JC1414000. This article was presented in part at the 2020 European
Control Conference. (Corresponding author: Tao Li.)

Jiexiang Wang is with the School of Mechatronic Engineering
and Automation, Shanghai University, Shanghai 200072, China (e-mail:
920331447@qq.com).

Tao Li and Xiwei Zhang are with the Key Laboratory of Pure Mathematics
and Mathematical Practice, School of Mathematical Sciences, East China
Normal University, Shanghai 200241, China (e-mail: tli@math.ecnu.edu.cn;
xwzhangmath@sina.com).

Communicated by R. Balan, Associate Editor for Detection and Estimation.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2021.3071167.
Digital Object Identifier 10.1109/TIT.2021.3071167

system, measurement devices such as remote terminal units
and phasor measurement units, send the measured active
and reactive power flows, bus injection powers and voltage
amplitudes to the Supervisory Control and Data Acquisition
(SCDA) system, then the voltage amplitudes and phase angles
at all buses are estimated for secure and stable operation of
the system ([5], [6]). Generally speaking, there are mainly
two categories of estimation algorithms in term of information
structure, i.e. centralized and decentralized algorithms. In a
centralized algorithm, a fusion center is used to collect all
nodes’s measurements and gives the global estimate. This
structure heavily relies on the fusion center and lacks robust-
ness and security. In a decentralized algorithm, a network
of multiple nodes is employed to cooperatively estimate the
unknown parameter via information exchanging, where each
node is an entity with integrated capacity of sensing, com-
puting and communication, and occasional node/link failures
may not destroy the entire estimation task. Hence, decentral-
ized cooperative estimation algorithms are more robust than
centralized ones ([7], [8]).

There exist various kinds of uncertainties in real
networks. For example, sensors are usually powered by
chemical or solar cells, and the unpredictability of cell
power leads to random node/link failures, which can be
modeled by a sequence of random communication graphs.
Besides, node sensing failures or measurement losses ([9])
can be modeled by a sequence of random observation
matrices. There are lots of literature on decentralized online
estimation problems with random graphs. Ugrinovskii [10]
studied decentralized estimation with Markovian switching
graphs. Kar & Moura [11] and Sahu et al. [12] considered
decentralized estimation with i.i.d. graph sequences, where
Kar & Moura [11] showed that the algorithm achieves weak
consensus under a weak distributed detectability condition
and Sahu et al. [12] proved that the algorithm converges
almost surely if the mean graph is balanced and strongly
connected. Simões & Xavier [13] proposed a decentralized
estimation algorithm with i.i.d. undirected graphs and proved
that the convergence rate of mean square estimation error
is asymptotically equal to that of the centralized algorithm.
Decentralized cooperative online estimation based on diffusion
strategies was addressed in [14]–[18] with spatio-temporally
independent observation matrices, i.e. the sequence of
observation matrices of each node is an independent random
process and those of different nodes are mutually independent.
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Piggott & Solo [19], [20] studied decentralized estimation
with temporally correlated observation matrices and a fixed
communication graph. Ishihara & Alghunaim [21] studied
decentralized estimation with spatially independent observa-
tion matrices. Kar et al. [22] and Kar & Moura [23] proposed
consensus+innovations decentralized estimation algorithms
with random graphs and observation matrices, where the
sequences of communication graphs and observation matrices
are both i.i.d. They proved that the algorithm converges almost
surely if the mean graph is balanced and strongly connected.
Zhang & Zhang [24] considered decentralized estimation
with finite Markovian switching graphs and i.i.d. observation
matrices, and proved that the algorithm converges in mean
square and almost surely if all graphs are balanced and jointly
contain a spanning tree. Zhang et al. [25] proposed a robust
decentralized estimation algorithm with the communication
graphs and observation matrices being mutually independent
with each other and both uncorrelated sequences. In
summary, most existing literature on decentralized cooperative
estimation algorithms required balanced mean graphs and
special statistical properties of communication graphs and
observation matrices, such as i.i.d. or Markovian switching
graph sequences, spatially or temporally independent
observation matrices with the fixed mathematical expectation,
which are also independent of communication graphs.

Besides random communication graphs and observation
matrices, random communication delays are also common
in real systems ( [26]–[28]). Due to congestions of com-
munication links and external interferences, time delays are
usually random and time-varying, whose probability distrib-
ution can be approximately estimated by statistical methods.
However, to our best knowledge, there has been no litera-
ture on decentralized online estimation with general random
time-varying communication delays. Zhang et al. [29] and
Millán et al. [30] considered decentralized estimation with
uniform deterministic time-invariant and time-varying com-
munication delays, respectively, where Millán et al. [30]
established a LMI type convergence condition by the
Lyapunov-Krasovskii functional method.

In this paper, we analyze convergence of decentralized coop-
erative online parameter estimation algorithms with random
observation matrices, communication graphs and time delays.
Each node’s algorithm consists of a consensus term taking a
weighted sum of its own estimate and delayed estimates of
its neighbouring nodes, and an innovation term processing its
own new measurement at each time step. The sequences of
observation matrices, communication graphs and time delays
are not required to satisfy special statistical properties, such
as mutual independence and spatio-temporal independence.
Furthermore, neither the sample paths of the random graphs
nor the mean graphs are necessarily balanced and connected at
each time step. These relaxations together with the existence
of random time-varying time delays bring essential difficulties
to the convergence analysis, and most existing methods are not
applicable. For example, the frequency domain approach ([29],
[31]) is only suitable for deterministic uniform time-invariant
time delays, and the Lyapunov-Krasovskii functional method

leads to a non-explicit LMI type convergence condition ([30]).
Liu et al. [32] and Liu et al. [33] addressed distributed con-
sensus with deterministic time-varying communication delays
and i.i.d. communication graphs. The analysis method therein
required the mean graph to be time-invariant and connected
at each time step, and is not applicable to time-varying mean
graphs.

We introduce delay matrices to model the random time-
varying communication delays between each pair of nodes.
By stochastic time-varying system, martingale convergence
theories and the binomial expansion of random matrix prod-
ucts, we transform the convergence analysis of the algorithm
into that of the mathematical expectation of random matrix
products. Firstly, for the delay-free case, we show that the
algorithm gains can be designed properly such that all nodes’
estimates converge to the true parameter in mean square and
almost surely if the observation matrices and communication
graphs satisfy the stochastic spatio-temporal persistence of
excitation condition. Especially, it is shown that for Markovian
switching communication graphs and observation matrices,
this condition holds if the stationary graph is balanced with a
spanning tree and the measurement model is spatio-temporally
jointly observable. Secondly, for the case with time delays,
we propose several conditions for mean square convergence,
which explicitly relies on the conditional expectations of
delay matrices, observation matrices and weighted adjacency
matrices of communication graphs over a sequence of fixed-
length time intervals. Furthermore, we show that if the com-
munication graphs are conditionally balanced, then under the
stochastic spatio-temporal persistence of excitation condition,
for any given bounded delays, proper algorithm gains can be
designed to guarantee mean square convergence of the algo-
rithm. Compared with the existing literature, our contributions
are summarized as below.

• The delay-free case
– We show that it is not necessary that the sequences of

observation matrices and communication graphs be
mutually independent or spatio-temporally indepen-
dent. Also, the mean graphs are not necessarily time-
invariant and balanced. We establish the stochastic
spatio-temporal persistence of excitation condition
under which the algorithm with random graphs and
observation matrices converges in mean square and
almost surely. For a network consisting of completely
isolated nodes, the stochastic spatio-temporal per-
sistence of excitation condition degenerates to a set
of independent stochastic persistence of excitation
conditions for centralized algorithms ([38]).

– Especially, for the case with Markovian switch-
ing communication graphs and observation matri-
ces, we prove that the stochastic spatio-temporal
persistence of excitation condition holds if the sta-
tionary graph is balanced with a spanning tree and
the measurement model is spatio-temporally jointly
observable, implying that neither local observability
of each node nor instantaneous global observability
of the entire measurement model is necessary.

Authorized licensed use limited to: East China Normal University. Downloaded on May 22,2021 at 07:29:53 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DECENTRALIZED COOPERATIVE ONLINE ESTIMATION 4037

• The case with time delays

– We introduce delay matrices to model the random
time-varying time delays between each pair of nodes.
By the method of binomial expansion of random
matrix products, we obtain several conditions for
mean square convergence, which explicitly relies on
the conditional expectations of the delay matrices,
observation matrices and weighted adjacency matri-
ces of communication graphs over a sequence of
fixed-length time intervals. These conditions show
that for given algorithm gains, the communication
graphs and observation matrices need to be persis-
tently excited with enough intensity to mitigate the
random time delays. We further show that if the
stochastic spatio-temporal persistence of excitation
condition holds, then for any given bounded delays,
proper algorithm gains can be designed to guarantee
mean square convergence of the algorithm for the
case with conditionally balanced digraphs.

– In this paper, the nonuniform random time-varying
communication delays are more general, and corre-
lated communication delays, graphs and observation
matrices are allowed.

The rest of the paper is arranged as follows. In Section II,
we formulate the problem. In Section III, we describe
the decentralized cooperative online parameter estimation
algorithm with random observation matrices, communication
graphs and time delays. We make the convergence analysis
for the delay-free case and the case with time delays in
Sections IV and V, respectively. In Section VI, we give
a numerical example to demonstrate the theoretical results.
Finally, we conclude the paper and give some future topics in
Section VII.

Notation and symbols: ◦: the Hadamard product; ⊗: the
Kronecker product; Tr(A): the trace of matrix A; ‖A‖: the
2-norm of matrix A; AT : the transpose of matrix A; P{A}:
the probability of event A; In: the n dimensional identity
matrix; ρ(A): the spectral radius of matrix A; |a| : the absolute
value of real number a; Rn: the n dimensional real vector
space; A ≥ B: the matrix A−B is positive semidefinite; �x�:
the largest integer less than or equal to x; �x	: the smallest
integer greater than or equal to x; E[ξ]: the mathematical
expectation of random variable ξ; λmin(A): the minimum
eigenvalue of real symmetric matrix A; 1n: the n dimensional
column vector with all entries being one; 0n×m: the n ×m
dimensional matrix with all entries being zero; bn = O(rn):
lim supn→∞

|bn|
rn

< ∞, where {bn, n ≥ 0} is a sequence
of real numbers, {rn, n ≥ 0} is a sequence of real positive
numbers; bn = o(rn): limn→∞ bn

rn
= 0; For a sequence of

n×n dimensional matrices {Z(k), k ≥ 0} and a sequence of
scalars {c(k), k ≥ 0}, denote

ΦZ(j, i) =
{
Z(j) · · ·Z(i), j ≥ i

In, j < i.
,

j∏
k=i

c(k) =
{
c(j) · · · c(i), j ≥ i

1, j < i.

For any nonnegative integers i and j, denote the Kronecker
function by Ii,j , satisfying Ii,j = 1 if i = j and Ii,j = 0
otherwise.

II. PROBLEM FORMULATION

A. Measurement Model

Consider a network of N nodes. Each node is an estimator
with integrated capacity of sensing, computing, storage and
communication. The estimators/nodes cooperatively estimate
an unknown parameter vector x0 ∈ Rn via information
exchanging. The relation between the measurement vector
zi(k) ∈ Rni of estimator i and the unknown parameter x0

is represented by

zi(k) = Hi(k)x0 + vi(k), i = 1, · · · , N, k ≥ 0. (1)

Here, Hi(k) ∈ Rni×n is the random observation (regres-
sion) matrix at time instant k with ni ≤ n, and vi(k) ∈
Rni is the additive measurement noise. Denote z(k) =
[zT1 (k), · · · , zTN (k)]T , H(k) = [HT

1 (k), · · · , HT
N (k)]T and

v(k) = [vT1 (k), · · · , vTN (k)]T . Rewrite (1) by the compact
form

z(k) = H(k)x0 + v(k), k ≥ 0. (2)

Remark 1: In many real applicaitons, the relations between
the unknown parameter and the measurements can be repre-
sented by (1). For example, in the decentralized multi-area
state estimation in power systems, the grid is partitioned into
multiple geographically non-overlapping areas, and each area
is regarded as a node. The grid state x0 to be estimated consists
of voltage amplitudes and phase angles at all buses. The
measurement zi(k) of each area/node consists of the active
and reactive power flow, bus injection powers and voltage
amplitude information measured by remote terminal units and
phasor measurement units in the i-th area. By the DC power
flow approximation ([34]), the grid state degenerates to the
voltage phase angles at all buses and the relation between the
measurement of each area and the grid state can be represented
by (1). In decentralized parameter identification, each node’s
measurement equation is given by

zi(k) =
n∑
j=1

cjzi(k − j) + vi(k)

= [zi(k − 1), · · · , zi(k − n)][c1, · · · , cn]T + vi(k).

For this case, the unknown parameter x0 = [c1, · · · , cn]T and
the observation matrix (generally called regressor) Hi(k) =
[zi(k − 1), · · · , zi(k − n)] is an n dimensional row vector.
In addition, sensing failures in real networks can be mod-
eled by a Markov chain or an i.i.d. sequence of Bernoulli
variables {δi(k), k ≥ 0}. Then Hi(k) = δi(k)H ′

i(k), where
{H ′

i(k), k ≥ 0} is the sequence of observation matrices
without sensing failures.

B. Communication Models

Assume that there exist nonuniform random time-varying
communication delays for the communication links between
each pair of nodes. We use a sequence of random variables
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{λji(k) ∈ {0, · · · , d}, k ≥ 0} to represent the time delays
associated with the link from node j to node i, where the
positive integer d represents the maximum time delay. This
sequence is subjected to the discrete probability distribution

P{λji(k) = q} = pji,q(k) with
d∑
q=0

pji,q(k) = 1. (3)

We stipulate that P{λii(k) = 0} = 1, i = 1, · · · , N ,
k ≥ 0. Denote the N dimensional matrices I(k, q) =
[Iλji(k),q]1≤j,i≤N , 0 ≤ q ≤ d, k ≥ 0, called delay matrices.
By the definition of Kronecker function, we know that for
each q = 0, 1, ..., d, {I(k, q), k ≥ 0} is a sequence of random
matrices and its sample paths are sequences of 0−1 matrices.
By (3), we know that E[Iλji(k),q] = pji,q(k) and

d∑
q=0

I(k, q) = 1N1TN a.s. (4)

We use a sequence of random communication graphs
{G(k) = 〈V , AG(k)〉, k ≥ 0} to describe the possible link
failures among nodes, where V = {1, · · · , N} is the node
set and AG(k) = [aij(k)]1≤i,j≤N is the weighted adjacency
matrix of the communication graph, in which aii(k) = 0
a.s. for all i ∈ V and k ≥ 0 and aij(k) �= 0 if and
only if the link from node j to node i exists at time
instant k for all i �= j. The neighborhood of node i is
Ni(k) = {j|aij(k) �= 0}. The degree matrix of the graph
is DG(k) = diag(

∑N
j=1 a1j(k), · · · ,

∑N
j=1 aNj(k)) and the

Laplacian matrix of the graph is LG(k) = DG(k) − AG(k)

([36] [37]). Denote L̂G(k) =
LG(k)+LTG(k)

2 . Specifically, if G(k)
is balanced, then L̂G(k) is the Laplacian matrix of the sym-
metrized graph of G(k), k ≥ 0 ([37]). Let

A(k, q) = (AG(k) ◦ I(k, q)) ⊗ In. (5)

Then, by (4) and the above, we have

d∑
q=0

A(k, q) = AG(k) ⊗ In. (6)

III. DECENTRALIZED COOPERATIVE ONLINE

ESTIMATION ALGORITHM

Let xi(k) ∈ R
n be the estimate by node i for the unknown

parameter x0 at time instant k, k ≥ −d with the initial
estimates xi(k),−d ≤ k ≤ 0 being any given real vectors.
Starting at the initial estimate, at any time instant k ≥ 0, node
i takes a weighted sum of its own estimate and delayed esti-
mates received from its neighbours, and then adds a correction
term based on the local measurement information (innovation)
to update the estimate xi(k + 1). Specifically, the decentral-
ized cooperative online parameter estimation algorithm with
random observation matrices, communication graphs and time
delays, motivated by a baseline version without time delays in

[23], is given by

xi(k + 1)
= xi(k) + a(k)HT

i (k)(zi(k) −Hi(k)xi(k))

+b(k)
∑

j∈Ni(k)
aij(k)(xj(k − λji(k)) − xi(k)),

i ∈ V , k ≥ 0, (7)

where a(k) and b(k) are the innovation and consensus algo-
rithm gains, respectively.

Denote the σ−fileds F(k) = σ(AG(s), v(s), Hi(s), λji(s),
j, i ∈ V , 0 ≤ s ≤ k), k ≥ 0, with F(−1) = {Ω, ∅}. For the
algorithm (7), we have the following assumptions.

A1.a The sequence {v(k), k ≥ 0} is independent of {H(k),
k ≥ 0}, {AG(k), k ≥ 0} and {λji(k), j, i ∈ V , k ≥ 0}.

A1.b The sequence {v(k),F(k), k ≥ 0} is a martingale
difference sequence and there exists a constant βv > 0 such
that supk≥0 E[‖v(k)‖2|F(k − 1)] ≤ βv a.s.

A2.a supk≥0 ‖H(k)‖ < ∞ a.s. and supk≥0 ‖AG(k)‖ < ∞
a.s.

A2.b There exist positive constants βa and βH such that

max
i,j∈V

sup
k≥0

|aij(k)| ≤ βa a.s.,max
i∈V

sup
k≥0

‖Hi(k)‖ ≤ βH a.s.

For the algorithm gains, we make the following conditions.
C1.a The sequences {a(k), k ≥ 0} and {b(k), k ≥ 0}

are positive real sequences monotonically decreasing to zero,
satisfying a(k) = O(b(k)).

C1.b b2(k) = o(a(k)), a(k) = O(a(k + 1)) and
∑∞

k=0

a(k) = ∞.
C1.c

∑∞
k=0 b

2(k) <∞.
Remark 2: Note that, in Assumption A1.a, neither mutual

independence nor spatio-temporal independence is assumed
on the observation matrices, communication graphs and time
delays.

Remark 3: It is easy to find {a(k), k ≥ 0} and {b(k),
k ≥ 0} satisfying Conditions C1.a–C1.c. If a(k) = 1

(k+1)τ1 ,
b(k) = 1

(k+1)τ2 , k ≥ 0, 0.5 < τ2 ≤ τ1 ≤ 1, then these
conditions hold.

By the definition of Iλji(k),q , we know that xj(k−λji(k)) =∑d
q=0 xj(k − q)Iλji(k),q . Then by (7), we have

xi(k + 1)
= xi(k) + a(k)HT

i (k)[zi(k) −Hi(k)xi(k)] + b(k)

×
∑

j∈Ni(k)
aij(k)

[
d∑
q=0

xj(k − q)Iλji(k),q − xi(k)

]
,

i ∈ V . (8)

Denote H(k) = diag{H1(k), · · · , HN (k)} and x(k) =
[xT1 (k), · · · , xTN (k)]T . By (5), rewrite (8) as

x(k + 1)
= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]x(k)

+b(k)
d∑
q=0

A(k, q)x(k − q) + a(k)HT (k)z(k). (9)

Denote the overall estimation error vector e(k) = x(k)−1N⊗
x0. Note that (LG(k) ⊗ In)(1N ⊗ x0) = 0. By (2) and (6),
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subtracting 1N ⊗ x0 on both sides of (9) leads to

e(k + 1)
= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]x(k)

+b(k)
d∑
q=0

A(k, q)x(k − q) + a(k)HT (k)z(k)

−1N ⊗ x0

= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]
×(x(k) − 1N ⊗ x0 + 1N ⊗ x0)

+b(k)
d∑
q=0

A(k, q)(x(k − q) − 1N ⊗ x0 + 1N ⊗ x0)

+a(k)HT (k)z(k) − 1N ⊗ x0

= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]

×(e(k) + 1N ⊗ x0) + a(k)HT (k)z(k) − 1N ⊗ x0

+b(k)
d∑
q=0

A(k, q)(e(k − q) + 1N ⊗ x0)

= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]e(k)

−(b(k)DG(k) ⊗ In + a(k)HT (k)H(k))(1N ⊗ x0)

+b(k)
d∑
q=0

A(k, q)e(k − q) + a(k)HT (k)z(k)

+b(k)(AG(k) ⊗ In)(1N ⊗ x0)

= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]e(k)

−a(k)HT (k)H(k)(1N ⊗ x0)

+b(k)
d∑
q=0

A(k, q)e(k − q) + a(k)HT (k)z(k)

−b(k)(LG(k) ⊗ In)(1N ⊗ x0)

= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]e(k)

−a(k)HT (k)H(k)(1N ⊗ x0) + a(k)HT (k)v(k)

+a(k)HT (k)H(k)x0 + b(k)
d∑
q=0

A(k, q)e(k − q),

which together with H(k)(1N ⊗ x0) = H(k)x0 gives the
overall estimation error equation

e(k + 1)
= [INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)]e(k)

+b(k)
d∑
q=0

A(k, q)e(k − q) + a(k)HT (k)v(k). (10)

For the delay-free case, d = 0. Then the algorithm (9) becomes

x(k + 1)
= [INn − b(k)LG(k) ⊗ In − a(k)HT (k)H(k)]x(k)

+a(k)HT (k)z(k), (11)

and the estimation error equation (10) becomes

e(k + 1)
= [INn − b(k)LG(k) ⊗ In − a(k)HT (k)H(k)]e(k)

+a(k)HT (k)v(k). (12)

Remark 4: In this paper, we use the concept of Laplacians
of digraphs defined in [37], which is widely used in the
literature on decentralized estimation ([11]–[24]). For the
delay-free case, the consensus term [LG(k)⊗In]x(k) naturally
appears in the algorithm (11). Note that another concept
of symmetric Laplacians of digraphs is proposed in [35].
This symmetric Laplacian involves the Perron vector of the
weighted adjacency matrix. It has been pointed out in [35]
that for a general digraph, there is no closed form solution
for the Perron vector. Generally, the ith element of the Perron
vector, which is not local information of the ith node, depends
on the weights associated to all nodes. Therefore, though
the Laplacian proposed in [35] is symmetric, it is generally
incompatible with the decentralized nature of the estimation
algorithm.

IV. THE DELAY-FREE CASE

In this section, we give the convergence conditions of the
algorithm (7) for the delay-free case, i.e. λji(k) = 0, a.s.
∀ j, i ∈ V , ∀ k ≥ 0. All proofs of results are put in
Appendix B.

For any given positive integers h and m, denote

Λhm = λmin

[
(m+1)h−1∑
k=mh

(
E[L̂G(k)|F(mh− 1)] ⊗ In

+E[HT (k)H(k)|F(mh− 1)]
)]
,

Λ
h

m = λmin

[
(m+1)h−1∑
k=mh

(
b(k)E[L̂G(k)|F(mh− 1)] ⊗ In

+a(k)E[HT (k)H(k)|F(mh − 1)]
)]
.

We first give a result for the case with general processes of
random graphs and observation matrices.

Theorem IV.1: Suppose that Assumptions A1.a–A1.b hold.
If Condition C1.a holds, and there exists an integer h > 0, a
constant ρ0 > 0 and a positive real sequence {c(m),m ≥ 0}
with

b2(mh) = o(c(m)),
∞∑
m=0

c(m) = ∞, (13)

such that (b.1) Λ
h

m ≥ c(m) a.s., m ≥ 0 and (b.2) supk≥0

[E[(‖LG(k)‖+‖HT (k)H(k)‖)2max{h,2} |F(k−1)]]
1

2max{h,2} ≤
ρ0 a.s., then the algorithm (7) converges in mean square, that
is, limk→∞ E‖xi(k) −x0‖2 = 0, i ∈ V . In addition,
if Assumption A2.a and Condition C1.c hold, then the algo-
rithm (7) converges almost surely, i.e. limk→∞ xi(k) = x0, i ∈
V a.s.

Remark 5: Most existing literature on decentralized estima-
tion suppose that the mean graphs are balanced ([22], [24]).
Here, the condition (b.1) in Theorem IV.1 may still hold even
if the mean graphs are unbalanced. For example, consider a
fixed weighted graph G = 〈V = {1, 2},AG = [aij ]2×2〉 with
a12 = 1 and a21 = 0.3. Obviously, G is unbalanced. Suppose
H1 = 0, H2 = 1. Choose a(k) = b(k) = 1

k+1 . We have

Authorized licensed use limited to: East China Normal University. Downloaded on May 22,2021 at 07:29:53 UTC from IEEE Xplore.  Restrictions apply. 



4040 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 6, JUNE 2021

λmin(b(m)L̂G + a(m)HTH) = 1
m+1λmin(L̂G + HTH) =

0.5821
m+1 . Then, the condition (b.1) holds with h = 1 and
c(m) = 0.5821

m+1 satisfying (13). A more complex example with
unbalanced mean graphs is given in Section VI.

Next, we give Theorem IV.2 for the case with conditionally
balanced digraphs:

Γ1 =
{
{G(k), k ≥ 0}|E[AG(k)|F(k − 1)]

is nonnegative and its associated random graph is

balanced a.s., k ≥ 0
}
.

Theorem IV.2: Suppose that {G(k), k ≥ 0} ∈ Γ1,
Assumptions A1.a–A1.b hold. If Conditions C1.a–C1.b hold,
and there exists an integer h > 0, positive constants θ
and ρ0 such that (c.1) infm≥0 Λhm ≥ θ > 0 a.s. and
(c.2) supk≥0[E[(‖LG(k)‖ + ‖HT (k)H(k)‖)2max{h,2} |F(k −
1)]]

1
2max{h,2} ≤ ρ0 a.s., then the algorithm (7) converges in

mean square. In addition, if Assumption A2.a and Condition
C1.c hold, then the algorithm (7) converges almost surely.

Remark 6: The condition (b.1) in Theorem IV.1 and the
condition (c.1) in Theorem IV.2 are the key convergence
conditions. We call them the stochastic spatio-temporal per-
sistence of excitation conditions. In detail, spatio emphasizes
the reliance of the conditions on the communication graphs
and observation matrices over all nodes rather than a single
node, while temporal represents the summing matrices over a
sequence of fixed-length time intervals rather than a single
time step, and “persistence of excitation” represents that
the minimum eigenvalues of matrices consisting of spatio-
temporal observation matrices and Laplacian matrices are
uniformly bounded away from zero with respect to the sam-
ple paths in some sense. Guo [38] considered centralized
estimation algorithms with random observation matrices and
proposed the “stochastic persistence of excitation” condition
to ensure convergence. The condition (c.1) can be regarded
as the generalization of “stochastic persistence of excitation”
condition in [38] to that for decentralized algorithms. For a
network with N isolated nodes, LG(k) ≡ 0N×N a.s., and
the condition (c.1) degenerates to N independent “stochastic
persistence of excitation” conditions.

In the most existing literature, it was also required that
the sequence of observation matrices be i.i.d. and indepen-
dent of the sequence of communication graphs, neither of
which is necessary in Theorems IV.1 and IV.2. Subsequently,
we give more intuitive convergence conditions for the case
with Markovian switching communication graphs and obser-
vation matrices. We first make the following assumption.

A3 {〈H(k),AG(k)〉, k ≥ 0} ⊆ S is a homogeneous
and uniform ergodic Markov chain with a unique stationary
distribution π.
Here, the set S = {〈Hl,Al〉, l = 1, 2, ...} with Hl =
diag(H1,l, · · · , HN,l), where {Hi,l ∈ Rni×n, l = 1, 2, ...}
is the state space of observation matrices of node i and
{Al, l = 1, 2, ...} being the state space of the weighted
adjacency matrices, π = [π1, π2, ...]T , πl ≥ 0, l = 1, 2, ...,
and

∑∞
l=1 πl = 1 with πl representing π(〈Hl,Al〉).

Corollary IV.1: Suppose that Assumptions A1.a–A1.b, A3
hold, and supl≥1 ‖Al‖ <∞, supl≥1 ‖Hl‖ <∞. If Conditions
C1.a–C1.c hold, and

(d.1) the stationary weighted adjacency matrix
∑∞

l=1 πlAl

is nonnegative and its associated graph is balanced with a
spanning tree;

(d.2) the measurement model (1) is spatio-temporally jointly
observable, i.e.

λmin

(
N∑
i=1

( ∞∑
l=1

πlH
T
i,lHi,l

))
> 0, (14)

then the algorithm (7) converges in mean square and almost
surely.

Remark 7: Most of the existing decentralized estimation
algorithms used the mathematical expectation of observation
matrices which is restricted to be time-invariant and difficult
to be obtained ([22], [24]). They required instantaneous global
observability in the statistical sense for the measurement
model, i.e.,

∑N
i=1H

T

i Hi is positive definite, where Hi is
a fixed matrix with E[Hi(k)] ≡ Hi, for all k ≥ 0, i =
1, 2, ..., N . In contrast, we only use the sample paths of
observation matrices in the algorithm (7). The mathematical
expectations of observation matrices are allowed to be time-
varying. We prove that for homogeneous and uniform ergodic
Markovian switching observation matrices and communication
graphs, the stochastic spatio-temporal persistence of excita-
tion condition given in Theorem IV.2 holds if the stationary
graph is balanced with a spanning tree and the measurement
model is spatio-temporally jointly observable, that is, (14)
holds, implying that neither local observability of each node,
i.e. λmin(

∑∞
l=1 πlH

T
i,lHi,l) > 0, i ∈ V , nor instantaneous

global observability of the entire measurement model, i.e.
λmin(

∑N
i=1H

T
i,lHi,l) > 0, l = 1, 2, ..., is needed.

V. THE CASE WITH RANDOM TIME-VARYING

COMMUNICATION DELAYS

In this section, we analyze the convergence of the algorithm
(7) with random observation matrices, communication graphs
and time delays simultaneously. All proofs of results are put
in Appendix C.

In the presence of random time-varying communication
delays, the mean square convergence analysis of the algorithm
becomes very difficult. To address this, we transform the
estimation error equation (10) into the following equivalent
system ([32], [33]).

r(k + 1) = F (k)r(k) + g(k),

g(k) =
d∑
q=1

Cq(k)g(k − q) + a(k)HT (k)v(k),

k ≥ 0, (15)

where F (k), Cq(k), 1 ≤ q ≤ d, k ≥ 0 satisfy

F (k) + C1(k) = INn − b(k)DG(k) ⊗ In

−a(k)HT (k)H(k) + b(k)A(k, 0),
C1(k)F (k − 1) − C2(k) = −b(k)A(k, 1),
C2(k)F (k − 2) − C3(k) = −b(k)A(k, 2),
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Fig. 1. The curves of f1,1,1,N,d(·).

...

Cd−1(k)F (k − d+ 1) − Cd(k) = −b(k)A(k, d− 1),
Cd(k)F (k − d) = −b(k)A(k, d). (16)

Here, F (k) = INn, −d ≤ k ≤ −1. It can be verified that if
r(k) = e(k), −d ≤ k ≤ −1, then r(k) = e(k), ∀ k ≥ 0, i.e.
the system (10) and the system (15)-(16) are equivalent.

We need the following condition on the consensus gain.
C1.d The initial gain b(0) ≤ max0<ψ<1 fC1,βa,βH ,N,d(ψ),

where fC1,βa,βH ,N,d(ψ) � ψ

Nβa+C1β2
H+Nβa[(1−ψ)−(d+1)−1]

(1−ψ)−1−1

,

d ≥ 1, ψ ∈ (0, 1), with C1 � supk≥0
a(k)
b(k) .

It can be verified that given Assumption A2.b and
Condition C1.a, max0<ψ<1 fC1,βa,βH ,N,d(ψ) is well-defined.
Examples of f1,1,1,N,d(·) with different d and N are shown
in Figure 1.

We first establish a lemma as the basis of convergence
analysis.

Lemma V.1: If Assumption A2.b, Conditions C1.a and C1.d
hold, then F (k) is invertible and ‖F−1(k)‖ ≤ (1−ψ1)−1 a.s.,
∀k ≥ 0, where ψ1 = min{ψ ∈ (0, 1)|fC1,βa,βH ,N,d(ψ) ≥
b(0)}.

Note that, by the continuity of the function fC1,βa,βH ,N,d(·)
and Conditon C1.d, it is known that the set {ψ ∈
(0, 1)|fC1,βa,βH ,N,d(ψ) ≥ b(0)} is a nonempty and bounded
closed set. Then, ψ1 is well-defined.

If the conditions of Lemma V.1 hold, then F (k) is invert-
ible a.s. Thus, by (16), we have

F (k)
= INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)

+b(k)A(k, 0) − C1(k)
= INn − b(k)DG(k) ⊗ In − a(k)HT (k)H(k)

+b(k)A(k, 0) − (C2(k) − b(k)A(k, 1))F−1(k − 1)
...

= INn −G(k), k ≥ 0, (17)

where

G(k) � b(k)DG(k) ⊗ In + a(k)HT (k)H(k)

−b(k)
d∑
q=0

A(k, q)
[
ΦF (k − 1, k − q)

]−1
. (18)

For any given positive integers h and m, denote

Λ̃hm

= λmin

[
(m+1)h−1∑
k=mh

(
b(k)E[L̂G(k)|F(mh− 1)] ⊗ In

+a(k)E[HT (k)H(k)|F(mh− 1)]

−b(k)
2

d∑
q=0

E

[
A(k, q)[[ΦF (k − 1, k − q)]−1 − INn]

+[[ΦF (k − 1, k − q)]−1 − INn]T

×AT (k, q)
∣∣∣F(mh− 1)

])]
. (19)

Theorem V.1: Suppose that Assumptions A1.a–A1.b, A2.b
hold. If Conditions C1.a, C1.d hold, and there exists an integer
h > 0 and a positive real sequence {c(m),m ≥ 0} with
b2(mh) = o(c(m)),

∑∞
m=0 c(m) = ∞, such that

Λ̃hm ≥ c(m) a.s., m ≥ 0, (20)

then the algorithm (7) converges in mean square.
If {〈H(k),AG(k), λji(k), j, i ∈ V〉, k ≥ 0} is an inde-

pendent random process, then Corollary V.1 below gives a
sufficient condition for the condition (20) in Theorem V.1 to
hold, which is more intuitive and computable.

Corollary V.1: Suppose that Assumptions A1.a–A1.b, A2.b
hold, {〈H(k),AG(k), λji(k), j, i ∈ V〉, k ≥ 0} is an
independent process. If Condition C1.a holds, b(0) ≤
fC1,βa,βH ,N,d(ψ2) with ψ2 ∈ (0, 2

1
d − 1), and there exists

an integer h > 0 and a positive real sequence {c(m),m ≥ 0}
with b2(mh) = o(c(m)) and

∑∞
m=0 c(m) = ∞, such that

Λ
h

m −
(m+1)h−1∑
k=mh

[
b(k)

d∑
q=0

‖E[A(k, q)]‖[(1 + ψ2)q − 1]
2 − (1 + ψ2)q

]
≥ c(m), m ≥ 0, (21)

then the algorithm (7) converges in mean square.
Next, for the case with conditionally balanced digraphs,

the following corollary presents a more intuitive convergence
condition.

Corollary V.2: Suppose that Assumptions A1.a–A1.b, A2.b
hold and {G(k), k ≥ 0} ∈ Γ1. If Conditions C1.a–C1.b, C1.d
hold, b(k) = O(a(k)), and there exists an integer h > 0,
a constant θ > 0 such that

inf
m≥0

(Λhm − Σhm) ≥ θ a.s. (22)

where

Σhm = C2(C3)h max{1, C1}
(m+1)h−1∑
k=mh

d∑
q=0

‖E[A(k, q)

×([ΦF (k − 1, k − q)]−1 − INn)|F(mh− 1)]‖

with C2 � supk≥0
b(k)
a(k) and C3 � supk≥0

a(k)
a(k+1) , then,

the algorithm (7) converges in mean square. Furthermore, if
{〈H(k),AG(k), λji(k), j, i ∈ V〉, k ≥ 0} is an independent
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process, then (22) holds if there exist an integer h > 0 such
that

inf
m≥0

Λhm

> C2(C3)h max{1, C1} sup
m≥0

[
(m+1)h−1∑
k=mh

d∑
q=0(

‖E[A(k, q)]‖ [(1 + ψ2)q − 1]
2 − (1 + ψ2)q

)]
, (23)

and b(0) ≤ fC1,βa,βH ,N,d(ψ2), with ψ2 ∈ (0, 2
1
d − 1), where

C1 is defined in Condition C1.d.
Remark 8: Theorem V.1, Corollaries V.1-V.2 give explicit

convergence conditions under which all nodes’ estimates con-
verge to the true parameter in mean square. Existing literature
used the Lyapunov-Krasovskii functional method to deal with
time delays and obtained the non-explicit LMI type conver-
gence condition ([30]). In contrast, here, we transform the
system with random time-varying communication delays into
an equivalent delay-free system by introducing an auxiliary
system and then adopt the method of binomial expansion of
random matrix products to transform the mean square conver-
gence analysis of the delay-free system into that of the math-
ematical expectation of random matrix products, and obtain
the key convergence conditions (20)-(22) which explicitly rely
on the conditional expectations of delay matrices, observation
matrices and weighted adjacency matrices of communication
graphs over a sequence of fixed-length time intervals. In the
absence of time delays, the condition (20) degenerates to the
condition (b.1) in Theorem IV.1.

Remark 9: The conditions (21) and (23) can be further
simplified for special delay processes. If the delays are inde-
pendent of the graphs, then E[A(k, q)] = E[AG(k)]◦E[I(k, q)].
Here, the element in the ith row and the jth column of
E[I(k, q)], E[I(k, q)]ij = P{λji(k) = q} = pji,q(k). In addi-
tion,

• if λji(k) are identically distributed w.r.t. k, then
E[I(k, q)]ij = pji,q(0), ∀k ≥ 0;

• if λji(k) are identically distributed w.r.t. both k and
(j, i), then E[I(k, q)]ij = pq, i �= j where pq denotes
the probability that the packet is delayed by q steps
for all k and (j, i), j �= i. Therefore, ‖E[A(k, q)]‖ =
pq‖E[AG(k)]‖. Furthermore, if the graph sequence is an
i.i.d. process, then the condition (23) becomes

inf
m≥0

Λhm > C2(C3)h max{1, C1}h‖E[AG(0)]‖

×
d∑
q=0

pq[(1 + ψ2)q − 1]
2 − (1 + ψ2)q

.

Corollaries V.1-V.2 show that for given algorithm gains
{a(k), k ≥ 0} and {b(k), k ≥ 0}, if the communication
graphs and observation matrices are persistently excited with
enough intensity, then the additional effects of time delays
can be mitigated. The maximum delay bound d that can be
allowed is related to the weighted adjacency matrix of mean
graphs E[AG(k)], the probability distribution of time delays
E[I(k, q)] and the algorithm gains. In the absence of time

delays, (22) degenerates to the condition (c.1) in Theorem IV.2.
The following corollary shows that for the case with con-
ditionally balanced graphs, if the stochastic spatio-temporal
persistence of excitation condition infm≥0 Λhm ≥ θ a.s. holds,
then for any given bounded delays, mean square convergence
of the algorithm can be guaranteed if the algorithms gains are
properly designed and sufficiently small.

Corollary V.3: Suppose that Assumptions A1.a–
A1.b, A2.b hold, {G(k), k ≥ 0} ∈ Γ1 and there
exists an integer h > 0, a constant θ > 0 such that
infm≥0 Λhm ≥ θ a.s. If Conditions C1.a–C1.b hold,
b(k) = O(a(k)), and b(0) ≤ fC1,βa,βH ,N,d(ψ3) with
ψ3 ∈ (0, (1 + θ/[θ +NC2(C3)h max{1, C1}βadh])

1
d − 1),

then the algorithm (7) converges in mean square.

VI. NUMERICAL EXAMPLE

We apply our algorithm to decentralized multi-area online
state estimation in power systems to illustrate the effectiveness
of the obtained theoretical results. An IEEE 14-bus system
is used for the test, which has 14 buses and is partitioned
into 4 areas A1, A2, A3, A4, shown in Figure 2. After a DC
power flow approximation ([34]), the grid state to be estimated
degenerates into a vector of voltage phase angles at all buses.
Let bus 1’s voltage phase angle be zero, as the reference bus.
The grid state to be estimated is given by

x0 = [−4.98,−12.72,−11.33,−8.78,−14.22,−13.37,
−13.36,−14.94,−15.10,−14.79,
−15.05,−15.12,−16.03]T.

The measurements zi(k) are linearly related to x0, given
by zi(k) = si(k)H ′

ix0 + vi(k), i = 1, 2, 3, 4, where the
noise {vi(k), k ≥ 0} is assumed to be an i.i.d. process with
the standard normal distribution, {si(k), k ≥ 0} is an i.i.d.
sequence, modelling the sensing failures with P{si(k) = 1} =
P{si(k) = 0} = 0.5, and H ′

i , i = 1, ..., 4 are the observation
matrices, which are deterministic and given in Appendix D.
There are 4 random communication links with 0− 1 weights,
represented by the red dotted lines in Figure 2. At odd time
instants, the link from A2 to A3 awakes with the probability
0.5 and the others sleep; at even time instants, the link from
A2 to A3 sleeps and the others awake with the probability
0.5. Both {G(k), k ≥ 0} and {H(k), k ≥ 0} are independent

processes. We use the averaged relative error,
�4
i=1 ‖xi(k)−x0‖

4‖x0‖ ,
to evaluate the performance of the algorithm.

For the delay-free case, set a(k) = b(k) = 0.5
(k+1)0.52 .

Let c(m) = 0.0112
(2m+2)0.52 . When h = 2, we plot the curves

of Λ
2

m and c(m) w.r.t. m in Figure 3, which shows that
Λ

2

m ≥ c(m),m ≥ 0. The conditions of Theorem IV.1 hold.
Figure 4 is depicted with the curves of the averaged relative
errors, where the red line represents the error curve of the
algorithm without random link failures and sensing failures,
as the base case. It shows that in spite of the unbalance of the
mean graphs and the sensing failures, the four areas’ estimates
converge to x0. For the case with time delays, assume that
the delays are independent of the communication graphs,
observation matrices and measurement noises, and subjected
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Fig. 2. IEEE-14 multi-area buses and the communication graphs.

Fig. 3. Curves of Λ
2
m and c(m) = 0.0112

(2m+2)0.52
w.r.t. m.

Fig. 4. Curves of the averaged relative error
�4
i=1 ‖xi(k)−x0‖

4‖x0‖ for the
delay-free case.

to the Bernoulli distribution, i.e. λji(k) ∼ B(d, p) for all k
and (j, i). Then

P{λji(k) = q} = C
q
dp
q(1 − p)d−q, q = 0, · · · , d. (24)

Set d = 4, p = 0.4. We now verify the convergence conditions
in Corollary V.1. Let a(k) = b(k). Then C1 = 1. By the
above settings of communication graphs and observation
matrices, we know that βa = 1,βH = 4.07. Let ψ2 = 0.01.
Then we have fC1,βa,βH ,N,d(ψ2) = 0.0005. Then, let
b(k) = 0.0005

(k+1)0.1 . By the definition of pq in Remark 9, it
follows from (24) that pq = C

q
40.4

q0.64−q, q = 0, ..., 4.
Note that ‖E[AG(k)]‖ ≡ 0.5. As is discussed in Remark 9,
‖E[A(k, q)]‖ = pq‖E[AG(k)]‖. Hence, it can be calculated that

Fig. 5. Curves of Λ
2
m − 0.01

�2m+1
k=2m b(k) and c(m) w.r.t. m.

Fig. 6. Curve of the averaged relative error for the case with random time
delays.

∑(m+1)h−1
k=mh b(k)

∑d
q=0 ‖E[A(k, q)]‖ [(1+ψ2)

q−1]
2−(1+ψ2)q

=
∑2m+1

k=2m

b(k)
∑4
q=0

0.5pq [(1+ψ2)
q−1]

2−(1+ψ2)q
= 0.01

∑2m+1
k=2m b(k). Note that

Λ
2

m = λmin[
∑2m+1
k=2m b(k)(E[L̂G(k)] ⊗ I13 + E[HT (k)H(k)])].

Let c(m) = 0.00001
(4m+4)0.1 . We plot the curves of

Λ
2

m − 0.01
∑2m+1
k=2m b(k) and c(m) w.r.t. m in Figure 5,

showing that the condition (21) in Corollary V.1 holds.
Figure 6 is depicted with curve of the averaged relative error,
which confirms Corollary V.1.

VII. CONCLUSION

In this paper, we analyzed the convergence of the decen-
tralized cooperative online parameter estimation algorithm in
an uncertain communication environment. Each node has a
partial linear observation of the unknown parameter with
random time-varying observation matrices. The underlying
communication network is modeled by a sequence of random
digraphs and is subjected to nonuniform random time-varying
delays in channels.

For the delay-free case, we proved that if the observation
matrices and the graph sequence satisfy the stochastic spatio-
temporal persistence of excitation condition, then the algo-
rithm gains can be designed properly such that all nodes’
estimates converge to the true parameter in mean square and
almost surely. Specially, for Markovian switching communi-
cation graphs and observation matrices, this condition holds
if the stationary graph is balanced with a spanning tree and
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the measurement model is spatio-temporally jointly observ-
able. For the case with communication delays, we introduced
delay matrices to model the random time-varying commu-
nication delays, adopted the method of binomial expansion
of random matrix products to transform the mean square
convergence analysis of the algorithm into that of the mathe-
matical expectation of random matrix products, and obtained
mean square convergence conditions explicitly relying on
the conditional expectations of delay matrices, observation
matrices and weighted adjacency matrices of communica-
tion graphs over a sequence of fixed-length intervals. In the
absence of time delays, these mean square convergence condi-
tions degenerate to the stochastic spatio-temporal persistence
of excitation conditions. Especially, given that the digraphs
are conditionally balanced, we show that if the stochastic
spatio-temporal persistence of excitation condition holds, then
for any given bounded delay, proper algorithm gains can
be designed to guarantee mean square convergence of the
algorithm.

There are many interesting open issues for future
research. Theorem V.1 is established for a very general
type of delays, namely random and unordered. This means
that in the practical implementation, the packets of infor-
mation exchanged by pairs of nodes are being placed in a
processing queue without any regard to their transmit time
stamp. In some cases, all received packets are ordered by
the time stamp of their transmission, and the communication
delays would be random and monotone ( [32], [44], [45]).
How to explore monotonicity constraints in the random delay
process to relax the conditions or strengthen the results of
Theorem V.1 would be an interesting and challenging issue.
The main obstacle is how to deal with the delay-induced
products of the inverse of matrices, which is difficult and
may need more advanced techniques. Another important issue
is the convergence rate of the algorithm. Especially, Corol-
lary V.3 shows that for the case with conditionally balanced
graphs, if the stochastic spatio-temporal persistence of exci-
tation condition holds, then for any given bounded delays,
mean square convergence of the algorithm can be guaranteed
if we choose sufficiently small algorithms gains. However,
smaller algorithm gains generally lead to a slower conver-
gence. Thus, how to choose the algorithms gains for opti-
mizing the convergence rate is an interesting topic for future
investigation.

APPENDIX A
SEVERAL USEFUL LEMMAS

Definition A.1 ([39]): A Markov chain on a countable state
space S with a stationary distribution π and transition function
P(x, ·) is called uniform ergodic, if there exist positive con-
stants r > 1 and R such that for all x ∈ S, ‖Pn(x, ·) − π‖ ≤
Rr−n. Here, ‖Pn(x, ·) − π‖ =

∑
y |Pn(x, y) − πy |.

Lemma A.1 ([40]): For any given matrix P , denote W =
I−P . If there exists a constant ψ ∈ (0, 1) such that ‖P‖ ≤ ψ,
then W is invertible and ‖W−1‖ ≤ (1−‖P‖)−1 ≤ (1−ψ)−1.

Lemma A.2 ([41]): Assume that {s1(k), k ≥ 0} and
{s2(k), k ≥ 0} are real sequences satisfying 0 ≤ s2(k) < 1,

∑∞
k=0 s2(k) = ∞ and limk→∞

s1(k)
s2(k) exists. Then

lim
k→∞

k∑
i=1

s1(i)
k∏

l=i+1

(1 − s2(l)) = lim
k→∞

s1(k)
s2(k)

.

Lemma A.3 ([42]): Assume that {x(k),F(k)}, {α(k),
F(k)}, {β(k),F(k)} and {γ(k),F(k)} are all nonnegative
adaptive sequences, satisfying

E[x(k+1)|F(k)] ≤ (1+α(k))x(k)−β(k)+γ(k), k ≥ 0 a.s.

If
∑∞

k=0(α(k) + γ(k)) < ∞ a.s., then x(k) converges to a
finite random variable a.s. and

∑∞
k=0 β(k) <∞ a.s.

For the subsequent Lemmas A.4 and A.5, the readers
may be referred to Theorem 6.4 and its next paragraph in
Ch. 6 of [43].

Lemma A.4 (Conditional Lyapunov Inequality): Denote the
probability space by (Ω,F , P ). Let F1 be a sub σ−algebra
of F and ξ be a random variable on (Ω,F , P ). Then
(E[|ξ|s|F1])

1
s ≤ (E[|ξ|t|F1])

1
t a.s., 0 < s < t.

Lemma A.5 (Conditional Hölder Inequality): Denote
the probability space (Ω,F , P ). Let F1 be a sub
σ−algebra of F . Let ξ and η be two random variables
on (Ω,F , P ). Let constants p ∈ (1,∞), q ∈ (1,∞) and
1/p + 1/q = 1. If E[|ξ|p] < ∞ andE[|η|q] < ∞, then
E[|ξη||F1] ≤ (E[|ξ|p|F1])

1
p (E[|η|q |F1])

1
q a.s.

Lemma A.6: For any random matrix A ∈ Rm×n,
‖E[AAT ]‖ ≤ n‖E[ATA]‖.

Proof: By the properties of matrix trace, it follows
that ‖E[AAT ]‖ = λmax(E[AAT ]) ≤ Tr(E[AAT ]) =
Tr(E[ATA]) ≤ nλmax(E[ATA]) = n‖E[ATA]‖.

Lemma A.7: Let A = [aij ]N×N be a weighted adjacency
matrix of an undirected graph with N nodes and L be the
associated Laplacian matrix. Let x = [xT1 , ..., x

T
N ]T ∈ RNn

be any given nonzero Nn-dimensional vector where xi ∈ Rn,
i = 1, 2, ..., N and there exists i �= j, such that xi �= xj .
If aij ≥ 0, i, j = 1, 2, ..., N and the graph is connected, then
xT (L ⊗ In)x > 0.

Proof: By the definition of Laplacian matrix, we have
xT (L⊗In)x = 1

2

∑N
i=1

∑N
j=1 aij‖xi−xj‖2. Noting that there

exists i �= j, such that xi �= xj and the graph is connected,
by aij ≥ 0, i, j = 1, 2, ..., N , we get xT (L ⊗ In)x > 0.

APPENDIX B
PROOFS IN SECTION IV

Let

P (k) = INn −D(k), (25)

where

D(k) = b(k)LG(k) ⊗ In + a(k)HT (k)H(k). (26)

The proof of Theorem IV.1 needs the following lemma.
Lemma B.1: For the algorithm (7), if Condition C1.a,

the conditions (b.1) and (b.2) in Theorem IV.1 hold, then

lim
k→∞

‖E[ΦP (k, 0)ΦTP (k, 0)]‖ = 0. (27)
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Proof: By (25), we have

ΦTP ((m+ 1)h− 1,mh)ΦP ((m+ 1)h− 1,mh)
= (INn −DT (mh)) · · · (INn −DT ((m+ 1)h− 1))
×(INn −D((m+ 1)h− 1)) · · · (INn −D(mh)). (28)

Taking conditional expectation w.r.t. F(mh−1) on both sides
of the above, by the binomial expansion, we have

‖E[ΦTP ((m+ 1)h− 1,mh)
×ΦP ((m+ 1)h− 1,mh)|F(mh− 1)]‖
= ‖E[(INn −DT (mh)) · · · (INn −DT ((m+ 1)h− 1))
×(INn −D((m+ 1)h− 1)) · · ·
×(INn −D(mh))|F(mh− 1)]‖

=
∥∥∥INn −

(m+1)h−1∑
k=mh

E[DT (k) +D(k)|F(mh− 1)]

+E[M2(m) + · · · +M2h(m)|F(mh− 1)]
∥∥∥

≤
∥∥∥INn −

(m+1)h−1∑
k=mh

E[DT (k) +D(k)|F(mh− 1)]
∥∥∥

+ ‖E[M2(m) + · · · +M2h(m)|F(mh− 1)]‖ . (29)

Here, Mi(m), i = 2, · · · , 2h represent the i-th order terms in
the binomial expansion of ΦP ((m + 1)h − 1,mh)ΦTP ((m +
1)h− 1,mh).

Since the 2-norm of a symmetric matrix is equal to its
spectral radius, by the definition of spectral radius, we have

∥∥∥INn −
(m+1)h−1∑
k=mh

E[D(k) +DT (k)|F(mh− 1)]
∥∥∥

= ρ

(
INn −

(m+1)h−1∑
k=mh

E[D(k) +DT (k)|F(mh− 1)]

)

= max
1≤i≤Nn

∣∣∣∣∣λi
(
INn −

(m+1)h−1∑
k=mh

E[D(k)

+DT (k)|F(mh− 1)]

)∣∣∣∣∣
= max

1≤i≤Nn

∣∣∣∣∣1 − λi

(
(m+1)h−1∑
k=mh

E[D(k)

+DT (k)|F(mh− 1)]

)∣∣∣∣∣. (30)

Since both a(k) and b(k) tend to zero, by the condition (b.2),
we know that there exists a positive integer m1, which is
independent of the sample paths, such that

λi

(
(m+1)h−1∑
k=mh

E[D(k) +DT (k)|F(mh− 1)]

)
≤ 1,

i = 1, · · · , Nn, ∀m ≥ m1 a.s.

This together with (29) and (30) leads to

‖E[ΦTP ((m+ 1)h− 1,mh)
×ΦP ((m+ 1)h− 1,mh)|F(mh− 1)]‖

≤ 1 − λmin

(
(m+1)h−1∑
k=mh

E[D(k) +DT (k)|F(mh− 1)]

)
+ ‖E[M2(m) + · · · +M2h(m)|F(mh− 1)]‖ ,
∀m ≥ m1 a.s. (31)

We next bound the two terms on the right side of the above.
For the first term, by the definitions of D(k) and Λ

h

m and the
condition (b.1), we have

1 − λmin

(
(m+1)h−1∑
k=mh

E[D(k) +DT (k)|F(mh− 1)]

)

= 1 − λmin

(
(m+1)h−1∑
k=mh

E[2b(k)L̂G(k) ⊗ In

+2a(k)HT (k)H(k)|F(mh− 1)]

)
= 1 − 2Λ

h

m ≤ 1 − c(m), ∀m ≥ m1 a.s. (32)

By Lemma A.4 and the condition (b.2), it follows that

sup
k≥0

E[‖D̃(k)‖i|F(k − 1)]

≤ sup
k≥0

[E[‖D̃(k)‖2h |F(k − 1)]]
i

2h ≤ ρi0 a.s., 2 ≤ i ≤ 2h,

where D̃(k) = LG(k) ⊗ In + HT (k)H(k). Note that for any
given random variable ξ and σ-algebra F1 ⊆ F2, it is true
that

E[ξ|F1] = E[E[ξ|F2]|F1]. (33)

We then have

E[‖D̃(k)‖l|F(mh− 1)]

= E[E[‖D̃(k)‖l|F(k − 1)]|F(mh− 1)],
2 ≤ l ≤ 2h, k ≥ mh.

From the definitions of Mi(m), i = 2, · · · , 2h and the above,
by termwise multiplication and using Lemma A.5 repeatedly,
for the second term on the right side of (31), we have

‖E[M2(m) + · · · +M2h(m)|F(mh− 1)]‖

≤ b2(mh)

(
2h∑
i=2

C
i
2h(max{1, φ}ρ0)i

)
= b2(mh)α, (34)

where φ satisfies a(k) ≤ φb(k), α = (1 + max{1, φ}ρ0)2h −
1−2hmax{1, φ}ρ0 and C

p
m denotes the combinatorial number

of choosing p elements from m elements. By (31)-(34),
we have

‖E[ΦTP ((m+ 1)h− 1,mh)
×ΦP ((m+ 1)h− 1,mh)|F(mh− 1)]‖
≤ 1 − c(m) + b2(mh)α,m ≥ m1 a.s. (35)
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Denote mk = � kh�. By the properties of the conditional
expectation, Lemma A.6 and (35), we have

‖E[ΦP (k, 0)ΦTP (k, 0)]‖
≤ Nn‖E[ΦTP (k, 0)ΦP (k, 0)]‖
= Nn‖E[ΦTP (mkh− 1, 0)ΦTP (k,mkh)
×ΦP (k,mkh)ΦP (mkh− 1, 0)]‖
≤ Nn‖E[ΦTP (mkh− 1, 0)‖ΦTP (k,mkh)ΦP (k,mkh)‖
×ΦP (mkh− 1, 0)]‖
= Nn‖E[E[ΦTP (mkh− 1, 0)
×‖ΦTP (k,mkh)ΦP (k,mkh)‖
×ΦP (mkh− 1, 0)|F(mkh− 1)]]‖
= Nn‖E[ΦTP (mkh− 1, 0)E[‖ΦTP (k,mkh)
×ΦP (k,mkh)‖|F(mkh− 1)]ΦP (mkh− 1, 0)]‖. (36)

For any positive integers m,n satisfying 0 ≤ m− n ≤ h− 1,
it follows from the condition (b.2) that there exists a constant
ρ∗h > 0 such that

‖E[ΦTP (m,n)ΦP (m,n)|F(n− 1)]‖ < ρ∗h a.s. (37)

By the above and (36), noting that k−mkh ≤ h−1, we have

‖E[ΦP (k, 0)ΦTP (k, 0)]‖
≤ ρ∗hNn‖E[ΦTP (mkh− 1, 0)ΦP (mkh− 1, 0)]‖
= ρ∗hNn‖E[ΦTP (m1h− 1, 0)ΦTP (mkh− 1,m1h)
×ΦP (mkh− 1,m1h)ΦP (m1h− 1, 0)]‖
= ρ∗hNn‖E[E(ΦTP (m1h− 1, 0)ΦTP (mkh− 1,m1h)
×ΦP (mkh− 1,m1h)
×ΦP (m1h− 1, 0)|F(m1h− 1))]‖
≤ ρ∗hNn‖E[ΦTP (m1h− 1, 0)‖E[ΦTP (mkh− 1,m1h)
×ΦP (mkh− 1,m1h)|F(m1h− 1)]‖
×ΦP (m1h− 1, 0)]‖. (38)

By (33) and (35), we have

‖E[ΦTP (mkh− 1,m1h)
×ΦP (mkh− 1,m1h)|F(m1h− 1)]‖
= ‖E[ΦTP ((mk − 1)h− 1,m1h)
×ΦTP (mkh− 1, (mk − 1)h)
×ΦP (mkh− 1, (mk − 1)h)
×ΦP ((mk − 1)h− 1,m1h)|F(m1h− 1)]‖
= ‖E[E[ΦTP ((mk − 1)h− 1,m1h)
×ΦTP (mkh− 1, (mk − 1)h)
×ΦP (mkh− 1, (mk − 1)h)
×ΦP ((mk − 1)h− 1,m1h)|F((mk − 1)h− 1)]
|F(m1h− 1)]‖
= ‖E[ΦTP ((mk − 1)h− 1,m1h)
×E[ΦTP (mkh− 1, (mk − 1)h)
×ΦP (mkh− 1, (mk − 1)h)|F((mk − 1)h− 1)]
×ΦP ((mk − 1)h− 1,m1h)|F(m1h− 1)]‖
≤ ‖E[ΦTP ((mk − 1)h− 1,m1h)

×‖E[ΦTP (mkh− 1, (mk − 1)h)
×ΦP (mkh− 1, (mk − 1)h)|F((mk − 1)h− 1)]‖
×ΦP ((mk − 1)h− 1,m1h)|F(m1h− 1)]‖
≤ [1 − c(mk − 1) + b2((mk − 1)h)α]
×‖E[ΦTP ((mk − 1)h− 1,m1h)
×ΦP ((mk − 1)h− 1,m1h)|F(m1h− 1)]‖

≤
mk−1∏
s=m1

[1 − c(s) + b2(sh)α] a.s., (39)

which together with (38) leads to

‖E[ΦP (k, 0)ΦTP (k, 0)]‖
≤ ρ∗hNn‖E[ΦTP (m1h− 1, 0)ΦP (m1h− 1, 0)]‖

×
mk−1∏
s=m1

[1 − c(s) + b2(sh)α]. (40)

By (13), we know that there exists a positive integer m2 such
that

b2(mh)α ≤ 1
2
c(m), ∀m ≥ m2, (41)

Let m3 = max{m2,m1} and r1 =
∏m3−1
s=m1

[1 − c(s) +
b2(sh)α]. By (13) and (41), we have

lim
k→∞

mk−1∏
s=m1

[1 − c(s) + b2(sh)α]

≤ lim
k→∞

r1

mk−1∏
s=m3

[1 − 1
2
c(s)]

≤ lim
k→∞

r1 exp
(
− 1

2

mk−1∑
s=m3

c(s)
)

= r1 exp
(
− 1

2

∞∑
s=m3

c(s)
)

= 0. (42)

Since ‖E[ΦTP (m1h − 1, 0)ΦP (m1h − 1, 0)]‖ < ∞ by the
condition (b.2), (40) and (42), we have (27). The lemma is
proved.

Proof of Theorem IV.1: If λji(k) = 0 a.s., ∀ j, i ∈ V ,
∀ k ≥ 0, then by (12), we have

e(k + 1)
= P (k)e(k) + a(k)HT (k)v(k)
= ΦP (k, 0)e(0)

+
k∑
i=0

a(i)ΦP (k, i+ 1)HT (i)v(i), k ≥ 0. (43)

By the above, we have

E[e(k + 1)eT (k + 1)]
= E[ΦP (k, 0)e(0)eT (0)ΦTP (k, 0)]

+E

[
ΦP (k, 0)e(0)

k∑
i=0

a(i)[ΦP (k, i+ 1)HT (i)v(i)]T
]

+E

[ k∑
i=0

a(i)ΦP (k, i+ 1)HT (i)v(i)[ΦP (k, 0)e(0)]T
]
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+E

[( k∑
i=0

a(i)ΦP (k, i+ 1)HT (i)v(i)
)

×
( k∑
i=0

a(i)ΦP (k, i+ 1)HT (i)v(i)
)T]

. (44)

By Assumptions A1.a and A1.b, we know that the second and
third terms on the right side of (44) are both equal to zero.
Moreover, from

E[v(i)vT (j)] = E[E[v(i)vT (j)|F(i− 1)]]
= E[E[v(i)|F(i− 1)]vT (j)]
= 0, ∀i > j, (45)

we have

E

[(
k∑
i=0

a(i)ΦP (k, i+ 1)HT (i)v(i)

)

×
(

k∑
i=0

a(i)ΦP (k, i+ 1)HT (i)v(i)

)T]

= E

[
k∑
i=0

a2(i)ΦP (k, i+ 1)HT (i)v(i)vT (i)

×H(i)ΦP (k, i+ 1)

]
.

Substituting the above into (44) and taking the 2-norm leads
to

‖E[e(k + 1)eT (k + 1)]‖
≤ ‖E[ΦP (k, 0)ΦTP (k, 0)]‖‖e(0)‖2

+
k∑
i=0

a2(i)‖E[ΦP (k, i+ 1)HT (i)v(i)

×vT (i)H(i)ΦTP (k, i+ 1)]‖
= ‖E[ΦP (k, 0)ΦTP (k, 0)]‖‖e(0)‖2

+
k∑

i=k−3h

a2(i)‖E[ΦP (k, i+ 1)HT (i)v(i)

×vT (i)H(i)ΦTP (k, i+ 1)]‖

+
k−3h−1∑
i=0

a2(i)‖E[ΦP (k, i+ 1)HT (i)v(i)

×vT (i)H(i)ΦTP (k, i+ 1)]‖. (46)

By Lemma B.1, we know that the first term in the above
converges to zero. For the second term in the above, when
k−h ≤ i < k, we have by (37) that ‖E[ΦTP (k, i+1)ΦP (k, i+
1)|F(i)]‖ ≤ ρ∗h a.s.; when k − 2h ≤ i < k − h, it follows
from Lemma A.6 and (37) that

‖E[ΦP (k, i+ 1)ΦTP (k, i+ 1)|F(i)]‖
≤ Nn‖E[ΦTP (k, i+ 1)ΦP (k, i+ 1)|F(i)]‖
= Nn‖E[ΦTP (k − h, i+ 1)ΦTP (k, k − h+ 1)
×ΦP (k, k − h+ 1)ΦP (k − h, i+ 1)|F(i)]‖
= Nn‖E[E[ΦTP (k − h, i+ 1)ΦTP (k, k − h+ 1)
×ΦP (k, k − h+ 1)

×ΦP (k − h, i+ 1)|F(k − h)]|F(i)]‖
= Nn‖E[ΦTP (k − h, i+ 1)E[ΦTP (k, k − h+ 1)
×ΦP (k, k − h+ 1)|F(k − h)]
×ΦP (k − h, i+ 1)|F(i)]‖
≤ Nn‖E[ΦTP (k − h, i+ 1)
×‖E[ΦTP (k, k − h+ 1)ΦP (k, k − h+ 1)|F(k − h)]‖
×ΦP (k − h, i+ 1)|F(i)]‖
≤ Nnρ∗h‖E[ΦTP (k − h, i+ 1)ΦP (k − h, i+ 1)|F(i)]‖
≤ Nn(ρ∗h)

2 a.s.;

when k − 3h ≤ i < k − 2h, similar to the above, we have
‖E[ΦP (k, i + 1)ΦTP (k, i+ 1)|F(i)]‖ ≤ Nn(ρ∗h)

3 a.s. Hence,
by Assumptions A1.a and A1.b, we have

sup
k≥0

‖E[ΦP (k, i+ 1)HT (i)v(i)vT (i)H(i)ΦTP (k, i+ 1)]‖
<∞, k − 3h ≤ i ≤ k a.s.

Then, noting that a(k) decays to zero, the second term on the
right side of (46) tends to zero.

We next prove that the third term on the right side of (46)
tends to zero. Let m̃i = � ih	. We have

‖E[ΦP (k, i+ 1)ΦTP (k, i+ 1)|F(i)]‖
≤ Nn‖E[ΦTP (k, i+ 1)ΦP (k, i+ 1)|F(i)]‖
= Nn‖E[ΦTP (m̃i+1h− 1, i+ 1)ΦTP (mkh− 1, m̃i+1h)
×ΦTP (k,mkh)ΦP (k,mkh)ΦP (mkh− 1, m̃i+1h)
×ΦP (m̃i+1h− 1, i+ 1)|F(i)]‖
= Nn‖E[E[ΦTP (m̃i+1h− 1, i+ 1)ΦTP (mkh− 1, m̃i+1h)
×ΦTP (k,mkh)ΦP (k,mkh)ΦP (mkh− 1, m̃i+1h)
×ΦP (m̃i+1h− 1, i+ 1)|F(mkh− 1)]|F(i)]‖
= Nn‖E[ΦTP (m̃i+1h− 1, i+ 1)ΦTP (mkh− 1, m̃i+1h)
×E[ΦTP (k,mkh)ΦP (k,mkh)|F(mkh− 1)]
×ΦP (mkh− 1, m̃i+1h)
×ΦP (m̃i+1h− 1, i+ 1)|F(i)]‖
≤ Nnρ∗h‖E[ΦTP (m̃i+1h− 1, i+ 1)
×ΦTP (mkh− 1, m̃i+1h)ΦP (mkh− 1, m̃i+1h)
×ΦP (m̃i+1h− 1, i+ 1)|F(i)]‖ a.s., (47)

where the first inequality follows by Lemma A.6, the second
equality follows by (33) and the last inequality follows by
(37). Similarly to (39) in the proof of Lemma B.1, we have

‖E[ΦTP (mkh− 1, m̃i+1h)
×ΦP (mkh− 1, m̃i+1h)|F(m̃i+1h− 1)]‖

≤
mk−1∏
s=�mi+1

[1 − c(s) + b2(sh)α],

From the above, (37) and (47), we have

‖E[ΦP (k, i+ 1)ΦTP (k, i+ 1)|F(i)]‖
≤ Nnρ∗h‖E[ΦTP (m̃i+1h− 1, i+ 1)
×ΦTP (mkh− 1, m̃i+1h)ΦP (mkh− 1, m̃i+1h)
×ΦP (m̃i+1h− 1, i+ 1)|F(i)]‖
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= Nnρ∗h‖E[E[ΦTP (m̃i+1h− 1, i+ 1)
×ΦTP (mkh− 1, m̃i+1h)ΦP (mkh− 1, m̃i+1h)
×ΦP (m̃i+1h− 1, i+ 1)|F(m̃i+1h− 1)]|F(i)]‖
= Nnρ∗h‖E[ΦTP (m̃i+1h− 1, i+ 1)
×E[ΦTP (mkh− 1, m̃i+1h)
×ΦP (mkh− 1, m̃i+1h)|F(m̃i+1h− 1)]
×ΦP (m̃i+1h− 1, i+ 1)|F(i)]‖
≤ Nnρ∗h‖E[ΦTP (m̃i+1h− 1, i+ 1)
×‖E[ΦTP (mkh− 1, m̃i+1h)
×ΦP (mkh− 1, m̃i+1h)|F(m̃i+1h− 1)]‖
×ΦP (m̃i+1h− 1, i+ 1)|F(i)]‖

≤ Nnρ∗h

mk−1∏
s=�mi+1

[1 − c(s) + b2(sh)α]

×‖E[ΦTP (m̃i+1h− 1, i+ 1)
×ΦP (m̃i+1h− 1, i+ 1)|F(i)]‖

≤ Nn(ρ∗h)
2
mk−1∏
s=�mi+1

[1 − c(s) + b2(sh)α],

0 ≤ i ≤ k − 3h− 1 a.s., (48)

By (48), the condition (b.2), Assumptions A1.a and A1.b,
it follows that

‖E[ΦP (k, i+ 1)HT (i)v(i)vT (i)H(i)ΦTP (k, i+ 1)]‖
= ‖E[E[ΦP (k, i+ 1)HT (i)v(i)
×vT (i)H(i)ΦTP (k, i+ 1)|F(i)]]‖
≤ ‖E[‖HT (i)v(i)vT (i)H(i)‖
×E[ΦP (k, i+ 1)ΦTP (k, i+ 1)|F(i)]]‖
≤ E[‖HT (i)v(i)vT (i)H(i)‖
×‖E[ΦP (k, i+ 1)ΦTP (k, i+ 1)|F(i)]‖]
≤ Nn(ρ∗h)

2
E[‖HT (i)v(i)vT (i)H(i)‖]

×
mk−1∏
s=�mi+1

[1 − c(s) + b2(sh)α]

≤ Nnβvρ0(ρ∗h)
2
mk−1∏
s=�mi+1

[1 − c(s) + b2(sh)α]

≤ Nnβvρ0(ρ∗h)
2
mk−1∏
s=�mi+1

[1 − 1
2
c(s)],

m3h− 1 ≤ i ≤ k − 3h− 1.

By the above, we have

k−3h−1∑
i=0

a2(i)‖E[ΦP (k, i+ 1)HT (i)v(i)

×vT (i)H(i)ΦTP (k, i+ 1)]‖

=
m3h−2∑
i=0

a2(i)‖E[ΦP (k, i+ 1)HT (i)v(i)

×vT (i)H(i)ΦTP (k, i+ 1)]‖

+
k−3h−1∑
i=m3h−1

a2(i)‖E[ΦP (k, i+ 1)HT (i)v(i)

×vT (i)H(i)ΦTP (k, i+ 1)]‖

≤
m3h−2∑
i=0

a2(i)‖E[ΦP (k, i+ 1)ΦTP (k, i+ 1)

×E[‖H(i)‖2‖v(i)‖2‖|F(i)]]‖

+Nnβvρ0(ρ∗h)
2
k−3h−1∑
i=m3h−1

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]

≤ βvρ0

m3h−2∑
i=0

a2(i)‖E[ΦP (k, i+ 1)ΦTP (k, i+ 1)]‖

+Nnβvρ0(ρ∗h)
2

×
k−3h−1∑
i=m3h−1

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]. (49)

By Lemma B.1, we know that limk→∞ ‖E[ΦP (k, i +
1)ΦTP (k, i+ 1)]‖ = 0, 0 ≤ i ≤ m3h− 2. Then,

lim
k→∞

βvρ0

m3h−2∑
i=0

a2(i)‖E[ΦP (k, i+ 1)ΦTP (k, i+ 1)]‖

= 0. (50)

By direct calculations, it follows that
k−3h−1∑
i=m3h−1

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]

≤
k∑
i=0

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]

=
mkh−1∑
i=0

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]

+
k∑

i=mkh

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]

=
mk−1∑
i=0

[
(i+1)h−1∑
j=ih

a2(j)

]
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]

+
k∑

i=mkh

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)]. (51)

Since a(k) decays to zero, it follows that

lim
k→∞

k∑
i=mkh

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)] = 0. (52)

By (13) and Condition C1.a, we have∑mkh−1
j=(mk−1)h a

2(j)

c(mk − 1)
≤ ha2((mk − 1)h)

c(mk − 1)
and

lim
k→∞

ha2((mk − 1)h)
c(mk − 1)

= lim
k→∞

ha2((mk − 1)h)
b2((mk − 1)h)

b2((mk − 1)h)
c(mk − 1)

= 0.
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Then, from (13) and Lemma A.2, we have

lim
k→∞

mk−1∑
i=0

[
(i+1)h−1∑
j=ih

a2(j)

]
mk−1∏
s=�mi+1

[1 − 1
2
c(s+ 1)]

= lim
k→∞

2
∑mkh−1
j=(mk−1)h a

2(j)

c(mk − 1)
= 0.

By the above, (51) and (52), it follows that

lim
k→∞

k−3h−1∑
i=m3h−1

a2(i)
mk−1∏
s=�mi+1

[1 − 1
2
c(s)] = 0. (53)

Then, by (49), (50) and the above, we have

lim
k→∞

k−3h−1∑
i=0

a2(i)‖E[ΦP (k, i+ 1)HT (i)v(i)

×vT (i)H(i)ΦTP (k, i+ 1)]‖ = 0.

Thus, the third term on the right side of (46) tends to zero.
We have limk→∞ ‖E[e(k)eT (k)]‖ = 0. Since E‖e(k)‖2 ≤
Nn‖E[e(k)eT (k)]‖, it follows that limk→∞ E‖e(k)‖2 = 0.
The algorithm (7) converges in mean square.

We next prove that the algorithm (7) converges almost
surely. By (43), it follows that

e((m+ 1)h)

= ΦP ((m+ 1)h− 1,mh)e(mh) +
(m+1)h−1∑
k=mh

a(k)

×ΦP ((m+ 1)h− 1, k + 1)HT (k)v(k),m ≥ 0.

Taking the 2-norm and then conditional expectation w.r.t.
F(mh− 1) on both sides of the above, we have

E[‖e((m+ 1)h)‖2|F(mh− 1)]
= eT (mh)E[ΦTP ((m+ 1)h− 1,mh)
×ΦP ((m+ 1)h− 1,mh)|F(mh− 1)]e(mh)

+E

[(
(m+1)h−1∑
k=mh

a(k)ΦP ((m+ 1)h− 1, k + 1)

×HT (k)v(k)

)T

×
(

(m+1)h−1∑
k=mh

a(k)ΦP ((m+ 1)h− 1, k + 1)

×HT (k)v(k)

)∣∣∣∣∣F(mh− 1)

]

+2eT (mh)E

[
ΦTP ((m+ 1)h− 1,mh)

×
(

(m+1)h−1∑
k=mh

a(k)ΦP ((m+ 1)h− 1, k + 1)

×HT (k)v(k)

)∣∣∣∣∣F(mh− 1)

]
.

By Lemma A.1 in [36] and Assumptions A1.a and A1.b,
the above can be written as

E[‖e((m+ 1)h)‖2|F(mh− 1)]
= eT (mh)E[ΦTP ((m+ 1)h− 1,mh)
×ΦP ((m+ 1)h− 1,mh)|F(mh− 1)]e(mh)

+
(m+1)h−1∑
k=mh

a2(k)E[‖ΦP ((m+ 1)h− 1, k + 1)

×HT (k)v(k)‖2|F(mh− 1)]. (54)

In the light of the condition (b.2), Assumptions A1.a and A1.b,
we know that there exists a constant ρ4 such that

(m+1)h−1∑
k=mh

E[‖ΦP ((m+ 1)h− 1, k + 1)

×HT (k)v(k)‖2|F(mh− 1)] ≤ ρ4 a.s., ∀m ≥ 0,

which together with (35) and (54) gives

E[‖e((m+ 1)h)‖2|F(mh− 1)]
≤ ‖E[ΦTP ((m+ 1)h− 1,mh)
×ΦP ((m+ 1)h− 1,mh)|F(mh− 1)]‖‖e(mh)‖2

+a2(mh)
(m+1)h−1∑
k=mh

E[‖ΦP ((m+ 1)h− 1, k + 1)

×HT (k)v(k)‖2|F(mh− 1)]
≤ (1 + b2(mh)α)‖e(mh)‖2 + a2(mh)ρ4 a.s.

By Lemma A.3 and Condition C1.c, we know that
{e(mh),m ≥ 0} converges almost surely, which, along with
limm→0 E‖e(mh)‖2 = 0 by Theorem IV.1, gives

lim
m→0

e(mh) = 0Nn×1 a.s. (55)

For arbitrarily small ε > 0, by Markov inequality, we have

P{a(k)‖v(k)‖ ≥ ε} ≤ a2(k)E‖v(k)‖2

ε2
, k ≥ 0,

which together with Assumption A1.b, Conditions C1.a and
C1.c gives

∞∑
k=0

P{a(k)‖v(k)‖ ≥ ε} ≤
∑∞

k=0 a
2(k)E‖v(k)‖2

ε2

≤ βv
∑∞

k=0 a
2(k)

ε2
<∞.

Then by the Borel-Cantelli lemma, we have P{a(k)‖v(k)‖ ≥
ε i.o.} = 0, which means

a(k)‖v(k)‖ → 0, k → ∞ a.s. (56)

By (43), we have

‖e(k)‖
≤ ‖ΦP (k − 1,mkh)‖‖e(mkh)‖

+
k−1∑
i=mkh

a(i)‖v(i)‖‖ΦP (k − 1, i+ 1)‖‖HT (i)‖. (57)

By Assumption A2.a and noting 0 ≤ k − mkh < h, we
know that supk≥0 ‖ΦP (k − 1,mkh)‖ < ∞ a.s. and supk≥0
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‖ΦP (k − 1, i + 1)‖‖HT (i)‖ < ∞ a.s.,mkh ≤ i ≤ k − 1.
Then by (55)-(57), we have limk→∞ e(k) = 0Nn×1 a.s. The
proof is completed.

Proof of Theorem IV.2: Since {G(k), k ≥ 0} ∈ Γ1,
E[L̂G(k)|F(k − 1)] is positive semi-definite, which together
with E[L̂G(k)|F(mh−1)] = E[E[L̂G(k)|F(k−1)]|F(mh−1)]
leads to that E[L̂G(k)|F(mh − 1)] is positive semi-definite,
k ≥ mh. Let c(m) = min{a((m+ 1)h), b((m+ 1)h)}. Then,
by Condition C1.a and the condition (c.1), we have

Λ
h

m

= λmin

[
(m+1)h−1∑
k=mh

(
b(k)E[L̂G(k)|F(mh− 1)] ⊗ In

+a(k)E[HT (k)H(k)|F(mh− 1)]

)]

≥ λmin

[
(m+1)h−1∑
k=mh

(
b((m+ 1)h)

×E[L̂G(k)|F(mh− 1)] ⊗ In

+a((m+ 1)h)E[HT (k)H(k)|F(mh− 1)]

)]
≥ c(m)Λhm ≥ c(m)θ.

Note that
∞∑
m=0

a((m+ 1)h) ≥ 1
h

∞∑
s=0

(m+2)h−1∑
i=(m+1)h

a(i) =
1
h

∞∑
k=h

a(k).

This together with Conditions C1.a and C1.b, and
c(m) ≥ min{a((m + 1)h), a((m + 1)h)/C1} =
min{1, 1/C1}a((m+ 1)h) where C1 � supk≥0

a(k)
b(k) , gives

∞∑
m=0

c(m) ≥ min{1, 1/C1}
∞∑
m=0

a((m+ 1)h)

≥ min{1, 1/C1}
h

∞∑
k=h

a(k) = ∞. (58)

By Conditions C1.a and C1.b, we get

sup
m≥0

a(mh)
c(m)

= sup
m≥0

a(mh)
a(mh+ h)

a(mh+ h)
c(m)

≤ sup
m≥0

a(mh)
a(mh+ h)

a(mh+ h)
min{a(mh+ h), 1

C1
a(mh+ h)}

<∞,

which together with Condition C1.b gives

lim
m→∞

b2(mh)
c(m)

= lim
m→∞

b2(mh)
a(mh)

a(mh)
c(m)

= 0. (59)

Then, c(m) satisfies b2(mh) = o(c(m)) and
∑∞

m=0 c(m) =
∞. The proof is completed by Theorem IV.1.

Proof of Corollary IV.1: By Assumption A3 and the one-
to-one correspondence among AG(k) and LG(k), we know that
LG(k) is a homogeneous and uniform ergodic Markov chain

(See Definition A.1) with the unique stationary distribution
π. Denote the associated Laplacian matrix of Al by Ll and

L̂l =
�Ll+ �LTl

2 , l = 1, 2, ... By the definition of Λhm, we have

Λhm = λmin

[
(m+1)h−1∑
k=mh

E[L̂G(k) ⊗ In

+HT (k)H(k)|F(mh− 1)]

]

= λmin

[
(m+1)h−1∑
k=mh

E[L̂G(k) ⊗ In

+HT (k)H(k)|〈L̂G(mh−1),H(mh− 1)〉 = S0]

]

= λmin

[
h∑
k=1

∞∑
l=1

(L̂l ⊗ In + HT
l Hl)Pk(S0, 〈L̂l,Hl〉)

]
∀ S0 ∈ S, ∀ m ≥ 0, h ≥ 1. (60)

Noting the uniform ergodicity of {L̂G(k), k ≥ 0} and
{H(k), k ≥ 0} and the uniqueness of the stationary distri-
bution π, since supl≥1 ‖Ll‖ < ∞ and supl≥1 ‖Hl‖ < ∞,
we have∥∥∥∥∥

∑h
k=1

∑∞
l=1(L̂l ⊗ In + HT

l Hl)Pk(S0, 〈L̂l,Hl〉)
h

−
∞∑
l=1

πl(L̂l ⊗ In + HT
l Hl)

∥∥∥∥∥
=

∥∥∥∥∥
∑h

k=1

∑∞
l=1[(L̂l ⊗ In + HT

l Hl)Pk(S0, 〈L̂l,Hl〉)]
h

−
∑h
k=1

∑∞
l=1[πl(L̂l ⊗ In + HT

l Hl)]
h

∥∥∥∥∥
=

∥∥∥∥∥ 1
h

h∑
k=1

∞∑
l=1

[(L̂l ⊗ In + HT
l Hl)

×(Pk(S0, 〈L̂l,Hl〉) − πl)]

∥∥∥∥∥
≤ sup

l≥1
‖L̂l ⊗ In + HT

l Hl‖
∑h
k=1 Rr

−k

h
→ 0, h→ ∞,

where constants R and r are positive with r > 1.
By the definition of uniform convergence, we know that
1
h

[∑(m+1)h−1
k=mh E[L̂G(k) ⊗ In + HT (k)H(k)|F(mh − 1)]

]
converges to

∑∞
l=1 πl(L̂l ⊗ In + HT

l Hl) uniformly w.r.t. m
and the sample paths a.s. as h→ ∞.

By the conditions (d.1) and (d.2), it follows that
λmin(

∑∞
l=1 πl(L̂l ⊗ In + HT

l Hl)) > 0. To see this, for any
given x ∈ RNn, x �= 0Nn×1, let x = [xT1 , · · · , xTN ]T ,
xi ∈ Rn; (i) if x = 1N ⊗ a, ∃ a ∈ Rn and a �=
0n×1, i.e. x1 = x2 = .. = xN = a, then by the con-
dition (d.2), we have xT (

∑∞
l=1 πl(L̂l ⊗ In + HT

l Hl))x =
aT [
∑N

i=1

∑∞
l=1(πlH

T
i,lHi,l)]a > 0; (ii) otherwise, there must

be xi �= xj , ∃ i �= j. By the condition (d.1), we know that∑∞
l=1 πlL̂l is the Laplacian matrix of a connected graph. Then
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by Lemma A.7, we have xT (
∑∞

l=1 πl(L̂l ⊗ In +HT
l Hl))x ≥

xT (
∑∞

l=1 πlL̂l ⊗ In)x > 0. Combining (i) and (ii), we get
λmin(

∑∞
l=1 πl(L̂l ⊗ In + HT

l Hl)) > 0.
Since the function λmin(·), whose arguments are matrices,

is continuous, we know that for a given constant μ ∈
(0, 2λmin(

∑∞
l=1 πl(L̂l ⊗ In + HT

l Hl))), there exists a con-
stant δ > 0 such that for any given matrix L, |λmin(L) −
λmin(

∑∞
l=1 πl(L̂l ⊗ In + HT

l Hl))| ≤ μ
2 provided ‖L −∑∞

l=1 πl(L̂l ⊗ In + HT
l Hl)‖ ≤ δ. Since the convergence is

uniform, we know that there exists an integer h0 > 0 such
that

sup
m≥0

∥∥∥∥∥ 1
h

(m+1)h−1∑
k=mh

E[L̂G(k) ⊗ In

+HT (k)H(k)|F(mh − 1)]

−
∞∑
l=1

πl(L̂l ⊗ In + HT
l Hl)

∥∥∥∥∥ ≤ δ, h ≥ h0 a.s.,

which gives

sup
m≥0

∣∣∣∣∣ 1hΛhm − λmin

( ∞∑
l=1

πl(L̂l ⊗ In + HT
l Hl)

)∣∣∣∣∣
≤ μ

2
, h ≥ h0 a.s.

Thus, we arrive at

inf
m≥0

Λhm ≥
[
λmin

( ∞∑
l=1

πl(L̂l ⊗ In + HT
l Hl)

)
− μ

2

]
h

≥
[
λmin

( ∞∑
l=1

πl(L̂l ⊗ In + HT
l Hl)

)
− μ

2

]
h0

> 0 a.s.

By Theorem IV.2, the proof is completed.

APPENDIX C
PROOFS IN SECTION V

Proof of Lemma V.1: We adopt the mathematical induc-
tion method to prove the lemma. By (6) and (17), noting that
F (k) = INn,−d ≤ k ≤ −1, we have

F (0) = INn − [b(0)DG(0) ⊗ In + a(0)HT (0)H(0)

−b(0)
d∑
q=0

A(0, q)]

= INn − [b(0)DG(0) ⊗ In + a(0)HT (0)H(0)
−b(0)AG(0) ⊗ In].

Note that, under Condition C1.d, the set {ψ ∈ (0, 1)|b(0) ≤
fC1,βa,βH ,N,d(ψ)} is a nonempty and bounded closed set by
the continuity of fC1,βa,βH ,N,d(ψ). Hence, ψ1 exists. Then,
by the definition of ψ1, we have

b(0)

[
Nβa + C1β

2
H +Nβa

(1 − ψ1)−(d+1) − 1
(1 − ψ1)−1 − 1

]
≤ ψ1. (61)

By the above, Assumption A2.b and Condition C1.a, we have

‖G(0)‖ = ‖b(0)DG(0) ⊗ In + a(0)HT (0)H(0)
−b(0)AG(0) ⊗ In‖

≤ b(0) sup
k≥0

‖DG(k)‖ + a(0) sup
k≥0

‖HT (k)H(k)‖
+b(0) sup

k≥0
‖AG(k)‖

≤ b(0)[2Nβa + C1β
2
H ]

≤ b(0)[Nβa + C1β
2
H +Nβa

(1 − ψ1)−(d+1) − 1
(1 − ψ1)−1 − 1

]

≤ ψ1 a.s.

By the above and Lemma A.1, noting ψ1 ∈ (0, 1), it follows
that F (0) is invertible a.s. and ‖F−1(0)‖ ≤ (1 − ψ1)−1 a.s.

Assume that F (k) is invertible a.s. and ‖F−1(k)‖ <
(1 − ψ1)−1 a.s. for k = 0, 1, 2, · · · . By (61), Assumption
A2.b and Condition C1.a, we have

‖G(k + 1)‖ = ‖b(k + 1)DG(k+1) ⊗ In

+a(k + 1)HT (k + 1)H(k + 1) − b(k + 1)

×
d∑
q=0

A(k + 1, q)[ΦF (k, k − q + 1)]−1‖

≤ b(k + 1)[Nβa + C1β
2
H ]

+b(k + 1)Nβa
d∑
q=0

(1 − ψ1)−q

≤ b(0)[Nβa + C1β
2
H +Nβa

×[(1 − ψ1)−(d+1) − 1]/[(1 − ψ1)−1 − 1]]

≤ ψ1 a.s.

Then By Lemma A.1, we know that F (k+1) is invertible a.s.
and ‖F−1(k + 1)‖ ≤ (1 − ψ1)−1 a.s. By the mathematical
induction, the proof is completed.

Before proving Theorem V.1, we need the following lemma.
Lemma C.1: If Assumption A2.b, Conditions C1.a and

C1.d hold, and there exist a positive integer h and a positive
sequence {c(m),m ≥ 0} such that Λ̃hm ≥ c(m) a.s. with c(m)
satisfying

b2(mh) = o(c(m)) and
∞∑
m=0

c(m) = ∞, (62)

then

lim
k→∞

∥∥E(ΦF (k, 0)ΦTF (k, 0))
∥∥ = 0.

Proof: Since Assumption A2.b, Conditions C1.a and
C1.d hold, Lemma V.1 holds. Hence, F (k) is invertible a.s.,
and (17) follows.
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Similarly to (28)−(31) in the proof of Lemma B.1, there
exists a positive integer m′

1 such that

‖E[ΦF ((m+ 1)h− 1,mh)

×ΦTF ((m+ 1)h− 1,mh)|F(mh− 1)]‖

= 1 − λmin

(
(m+1)h−1∑
k=mh

E[G(k) +GT (k)|F(mh− 1)]

)
+
∥∥E[M2(m) + · · · +M2h(m)|F(mh− 1)]

∥∥ ,
∀m ≥ m′

1 a.s. (63)

Here, the definitions of M i(m), i = 2, · · · , 2h are similar
to (29).

By (18), (19) and Λ̃hm ≥ c(m) a.s., we have

1 − λmin

(
(m+1)h−1∑
k=mh

E[G(k) +GT (k)|F(mh− 1)]

)

= 1 − λmin

(
(m+1)h−1∑
k=mh

E

[
2b(k)DG(k) ⊗ In

+2a(k)HT (k)H(k)

−b(k)
d∑
q=0

[A(k, q)[ΦF (k − 1, k − q)]−1

+(A(k, q)[ΦF (k − 1, k − q)]−1)T ]

∣∣∣∣∣F(mh− 1)

])

= 1 − λmin

(
(m+1)h−1∑
k=mh

E

[
2b(k)L̂G(k) ⊗ In

+2a(k)HT (k)H(k)

−b(k)
d∑
q=0

[A(k, q)[[ΦF (k − 1, k − q)]−1 − INn]

+(A(k, q)[[ΦF (k − 1, k − q)]−1 − INn])T ]∣∣∣∣∣F(mh− 1)

])
= 1 − 2Λ̃hm ≤ 1 − c(m) a.s. (64)

From (18), Assumption A2.b, Condition C1.a and
Lemma V.1, we have

‖G(k)‖ ≤ b(k)‖DG(k) ⊗ In‖ + a(k)‖HT (k)H(k)‖

+b(k)‖
d∑
q=0

A(k, q)[ΦF (k − 1, k − q)]−1‖

≤ b(k)

(
Nβa + C1β

2
H +Nβa

×1 − (1 − ψ1)−(d+1)

1 − (1 − ψ1)−1

)
a.s., k ≥ 0.

By the above and the definition of M i(m), i = 2, · · · , 2h,
we have

‖M i(m)‖ ≤ b2(mh)Ci2h

×
(
Nβa + C1β

2
H +Nβa

1 − (1 − ψ1)−(d+1)

1 − (1 − ψ1)−1

)i
a.s.,

where Cpm represent the combinatorial number of choosing p
elements from m elements. Hence,

‖E[M2(m) + · · · +M2h(m)|F(mh− 1)]‖

≤ b2(mh)
2h∑
i=2

C
i
2h

×
(
Nβa + C1β

2
H +Nβa

1 − (1 − ψ1)−(d+1)

1 − (1 − ψ1)−1

)i
= b2(mh)γ a.s., (65)

where γ =
((
Nβa+C1β

2
H +Nβa

1−(1−ψ1)
−(d+1)

1−(1−ψ1)−1

)
+1
)2h

−
1 − 2h

(
Nβa + C1β

2
H +Nβa

1−(1−ψ1)
−(d+1)

1−(1−ψ1)−1

)
.

By (63), (64) and (65), we have

‖E[ΦF ((m+ 1)h− 1,mh)

×ΦTF ((m+ 1)h− 1,mh)|F(mh− 1)]‖
≤ 1 − c(m) + b2(mh)γ a.s.,m ≥ m′

1. (66)

By (17) and Assumption A2.b, we know that there exists a
positive constant η such that

‖F (k)‖ ≤ η a.s., k ≥ 0. (67)

Denote mk = � kh�. By (67) and Lemma A.6, we have

‖E[ΦF (k, 0)ΦTF (k, 0)]‖
≤ Nn‖E[ΦTF (k, 0)ΦF (k, 0)]‖
= Nn‖E[ΦTF (mkh− 1, 0)ΦTF (k,mkh)
×ΦF (k,mkh)ΦF (mkh− 1, 0)]‖
≤ Nn‖E[ΦTF (mkh− 1, 0)‖ΦF (k,mkh)‖2

×ΦF (mkh− 1, 0)]‖
≤ η2hNn‖E[ΦTF (mkh− 1, 0)ΦF (mkh− 1, 0)]‖
= η2hNn‖E[ΦTF (m′

1h− 1, 0)ΦTF (mkh− 1,m′
1h)

×ΦF (mkh− 1,m′
1h)ΦF (m′

1h− 1, 0)]‖
≤ η2hNn‖E[‖ΦF (m′

1h− 1, 0)‖2ΦTF (mkh− 1,m′
1h)

×ΦF (mkh− 1,m′
1h)]‖

≤ η2(h+m′
1h)Nn‖E[ΦTF (mkh− 1,m′

1h)
×ΦF (mkh− 1,m′

1h)]‖ a.s. (68)

From the properties of the conditional expectation and (66),
it follows that

‖E[ΦTF (mkh− 1,m′
1h)ΦF (mkh− 1,m′

1h)]‖
= ‖E[ΦTF ((mk − 1)h− 1,m′

1h)
×ΦTF (mkh− 1, (mk − 1)h)
×ΦF (mkh− 1, (mk − 1)h)
×ΦF ((mk − 1)h− 1,m′

1h)]‖
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= ‖E[E[ΦTF ((mk − 1)h− 1,m′
1h)

×ΦTF (mkh− 1, (mk − 1)h)
×ΦF (mkh− 1, (mk − 1)h)
×ΦF ((mk − 1)h− 1,m′

1h)|F((mk − 1)h− 1)]]‖
≤ ‖E[ΦTF ((mk − 1)h− 1,m′

1h)
×‖E[ΦTF (mkh− 1, (mk − 1)h)
×ΦF (mkh− 1, (mk − 1)h)|F((mk − 1)h− 1)]‖
×ΦF ((mk − 1)h− 1,m′

1h)]‖
≤ [1 − c(mk − 1) + b2((mk − 1)h)γ]
×‖E[ΦTF ((mk − 1)h− 1,m′

1h)
×ΦF ((mk − 1)h− 1,m′

1h)]‖

≤
mk−1∏
s=m′

1

[1 − c(s) + b2(sh)γ] a.s. (69)

Combining (68) and (69) implies

‖E[ΦF (k, 0)ΦTF (k, 0)]‖

≤ Nnη2(h+m′
1h)

mk−1∏
s=m′

1

[1 − c(s) + b2(sh)γ] a.s.

Similarly to (40)−(42) in the proof of Lemma B.1,
by Condition C1.a, (62) and the above, we then have
limk→∞ ‖E[ΦF (k, 0)ΦTF (k, 0)]‖ = 0. The proof is
completed.

Proof of Theorem V.1: By the conditions of the theorem,
it follows that Lemmas V.1 and C.1 hold.

Denote the following block matrices: r(k) = [rT (k),
gT (k), · · · , gT (k − d + 1)]T , Î = [0Nn×Nn, Ĩ]T and Ĩ =
[INn, 0Nn×Nn, · · · , 0Nn×Nn], where Î and Ĩ are the Nn(d+
1) dimensional column block matrix and Nnd dimensional
row block matrix with each block being the Nn dimensional
matrix, respectively. Denote

T (k) =
(

F (k) Ĩ
0Nnd×Nn C(k)

)
,

which gives

ΦT (k, 0) =(
ΦF (k, 0)

∑k
i=0 ΦF (k, i+ 1)ĨΦC(i− 1, 0)

0Nnd×Nn ΦC(k, 0)

)
.

Denote

C(k)

=

⎛⎜⎜⎜⎝
C1(k + 1) C2(k + 1) · · · Cd(k + 1)
INn 0Nn×Nn

. . .
. . .
INn 0Nnd×Nn

⎞⎟⎟⎟⎠ . (70)

By the state augmentation approach and (15), we have

r(k + 1) = T (k)r(k) + a(k + 1)ÎHT (k + 1)v(k + 1)

= ΦT (k, 0)r(0) +
k+1∑
i=1

a(i)ΦT (k, i)ÎHT (i)v(i),

k ≥ 0.

Premultiplying the Nn(d+ 1) dimensional row block matrix
I � [INn, 0Nn×Nn, · · · , 0Nn×Nn] on both sides of the above
gives

r(k + 1) = IΦT (k, 0)r(0) +
k+1∑
i=1

a(i)IΦT (k, i)ÎHT (i)v(i),

which leads to

E[r(k + 1)rT (k + 1)]

= E[IΦT (k, 0)r(0)rT (0)ΦTT (k, 0)I
T
]

+E

[
IΦT (k, 0)r(0)

( k+1∑
i=1

a(i)vT (i)H(i)ÎTΦTT (k, i)I
T
)]

+E

[( k+1∑
i=1

a(i)IΦT (k, i)ÎHT (i)v(i)
)
rT (0)ΦTT (k, 0)I

T
]

+E

[[ k+1∑
i=1

a(i)IΦT (k, i)ÎHT (i)v(i)
]

×
[ k+1∑
i=1

a(i)[IΦT (k, i)ÎHT (i)v(i)]T
]]
. (71)

By Assumptions A1.a and A1.b, we know that the second and
third terms on the right side of the above are both equal to
zero.

By (45), we have

E

[[ k+1∑
i=1

a(i)IΦT (k, i)ÎHT (i)v(i)
]

×
[ k+1∑
i=1

a(i)[IΦT (k, i)ÎHT (i)v(i)]T
]]

=
k+1∑
i=1

a2(i)E[IΦT (k, i)ÎHT (i)v(i)

×vT (i)H(i)ÎTΦTT (k, i)I
T
].

Substituting the above into (71) and taking the 2-norm on
both sides of (71), from Assumptions A1.a, A1.b and A2.b,
it follows that

‖E[r(k + 1)rT (k + 1)]‖

≤ r0‖E[IΦT (k, 0)ΦTT (k, 0)I
T
]‖ +

∥∥∥∥∥
k+1∑
i=1

a2(i)

×E[IΦT (k, i)ÎHT (i)v(i)vT (i)H(i)ÎTΦTT (k, i)I
T
]

∥∥∥∥∥
= r0‖E[IΦT (k, 0)ΦTT (k, 0)I

T
]‖

+

∥∥∥∥∥
k+1∑
i=1

a2(i)E[IΦT (k, i)ÎHT (i)E(v(i)vT (i))

×H(i)ÎTΦTT (k, i)I
T
]

∥∥∥∥∥
≤ r0‖E[IΦT (k, 0)ΦTT (k, 0)I

T
]‖ + sup

k≥0
‖E[v(k)vT (k)]‖

×
∥∥∥∥∥
k+1∑
i=1

a2(i)E[IΦT (k, i)ÎHT (i)H(i)ÎTΦTT (k, i)I
T
]

∥∥∥∥∥
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≤ r0‖E[IΦT (k, 0)ΦTT (k, 0)I
T
]‖

+β2
Hβv

∥∥∥∥∥
k+1∑
i=1

a2(i)E[IΦT (k, i)Î ÎTΦTT (k, i)I
T
]

∥∥∥∥∥
≤ r0‖E[IΦT (k, 0)ΦTT (k, 0)I

T
]‖

+β2
Hβv

k+1∑
i=1

a2(i)‖E[IΦT (k, i)ΦTT (k, i)I
T
]‖, (72)

where r0 � ‖r(0)rT (0)‖. By the definitions of ΦT (k, 0) and
I , we have

IΦT (k, 0) =
(
ΦF (k, 0)

k∑
i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
)
.

Substituting the above into (72) gives

‖E[r(k + 1)rT (k + 1)]‖
≤ r0‖E[ΦF (k, 0)ΦTF (k, 0)]‖

+β2
Hβv

k+1∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖

+r0
∥∥∥E[{ k∑

i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
}

×
{ k∑
i=0

ΦTC(i− 1, 0)ĨTΦTF (k, i+ 1)
}]∥∥∥+ β2

Hβv

×
k+1∑
i=1

a2(i)
∥∥∥E[{ k∑

j=i

ΦF (k, j + 1)ĨΦC(j − 1, i)
}

×
{ k∑
j=i

ΦF (k, j + 1)ĨΦC(j − 1, i)
}T ]∥∥∥. (73)

By Lemma C.1, we know that the first term on the right side
of the above converges to zero.

Denote m̃i = � ih	. By (67) and noting the definition of mk

defined in the proof of Lemma C.1, we have

k−3h∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖

=
k−3h−1∑
i=0

a2(i+ 1)‖E[ΦF (k, i+ 1)ΦTF (k, i+ 1)]‖

=
k−3h−1∑
i=0

a2(i+ 1)‖E[ΦF (k,mkh)

×ΦF (mkh− 1, m̃i+1h)ΦF (m̃i+1h− 1, i+ 1)
×ΦTF (m̃i+1h− 1, i+ 1)ΦTF (mkh− 1, m̃i+1h)
×ΦTF (k,mkh)]‖

≤ η2h
k−3h−1∑
i=0

a2(i+ 1)‖E[ΦF (k,mkh)

×ΦF (mkh− 1, m̃i+1h)ΦTF (mkh− 1, m̃i+1h)
×ΦTF (k,mkh)]‖

≤ η4h
k−3h−1∑
i=0

a2(i+ 1)‖E[ΦF (mkh− 1, m̃i+1h)

×ΦTF (mkh− 1, m̃i+1h)]‖,

which together with Lemma A.6 and (69) leads to

k+1∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖

≤ η4h
k−3h−1∑
i=0

a2(i+ 1)‖E[ΦF (mkh− 1, m̃i+1h)

×ΦTF (mkh− 1, m̃i+1h)]‖

+
k∑

i=k−3h

a2(i+ 1)‖E[ΦF (k, i+ 1)ΦTF (k, i+ 1)]‖

≤ Nnη4h
k−3h−1∑
i=0

a2(i+ 1)

×‖E[ΦTF (mkh− 1, m̃i+1h)ΦF (mkh− 1, m̃i+1h)]‖

+
k∑

i=k−3h

a2(i+ 1)‖E[ΦF (k, i+ 1)ΦTF (k, i+ 1)]‖

≤ Nnη4h
k−3h−1∑
i=0

a2(i+ 1)
mk−1∏
s=�mi+1

[1 − c(s) + b2(sh)γ]

+
k∑

i=k−3h

a2(i+ 1)‖E[ΦF (k, i+ 1)ΦTF (k, i+ 1)]‖.

Similarly to (51)−(53) in the proof of Theorem IV.1, we have

lim
k→∞

k+1∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖ = 0. (74)

Hence, the second term on the right side of (73) converges to
zero.

From (16) and (17), we have

Ci(k) = −b(k)
d∑
q=i

A(k, q)[ΦF (k − 1, k − q)]−1, 1 ≤ i ≤ d.

By Assumption A2.b and Condition C1.a, then there
exist ε ∈ (0, 1−ψ1√

Nnd
), where ψ1 is defined in Lemma V.1

and a positive integer k(ε), such that for ∀k ≥ k(ε),
‖Ci(k)‖∞ ≤ ε(ε−1)

ε−ε1−d a.s., 1 ≤ i ≤ d, where ‖ · ‖∞
represents the infinite norm of a matrix. If d > 1, denote
Y = diag{INn, εINn, ε2INn, · · · , εd−1INn}; if d = 1, denote
Y = INn, which together with (70) leads to Y C(k)Y −1 =⎛⎜⎜⎜⎝

C1(k + 1) ε−1C2(k + 1) · · · ε1−dCd(k + 1)
εINn 0Nn×Nn

. . .
. . .
εINn 0Nn×Nn

⎞⎟⎟⎟⎠ .

Then, it follows that

‖Y C(k)Y −1‖∞ ≤ max
{ d∑
i=1

ε1−i‖Ci(k + 1)‖∞, ε
}

≤ max
{ ε(ε− 1)
ε− ε1−d

ε− ε1−d

ε− 1
, ε
}

= ε a.s.

From the relation between infinite norm and 2-norm of a
matrix, we have

‖Y C(k)Y −1‖ ≤
√
Nnd‖Y C(k)Y −1‖∞

≤ ε
√
Nnd < 1 − ψ1 a.s. (75)
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Noting that F (k) is invertible a.s., we have

∥∥∥E[{ k∑
i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
}

×
{ k∑
i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
}T ]∥∥∥

≤
∑

0≤i,j≤k
‖E[ΦF (k, i+ 1)ĨΦC(i− 1, 0)

×ΦTC(j − 1, 0)ĨTΦTF (k, j + 1)]‖
≤

∑
0≤i,j≤k

‖E[ΦF (k, 0)[ΦF (i, 0)]−1ĨΦC(i− 1, 0)

×ΦTC(j − 1, 0)ĨT [ΦF (j, 0)]−TΦTF (k, 0)]‖
≤

∑
0≤i,j≤k

∥∥∥E[ΦF (k, 0)‖[ΦF (i, 0)]−1‖‖ĨΦC(i− 1, 0)

×ΦTC(j − 1, 0)ĨT ‖‖[ΦF (j, 0)]−T ‖ΦTF (k, 0)]
∥∥∥. (76)

By Lemma V.1, it follows that

‖[ΦF (i, 0)]−1‖ ≤ (1 − ψ1)−(i+1)and
‖[ΦF (j, 0)]−T ‖ ≤ (1 − ψ1)−(j+1) a.s. (77)

From (75), we obtain

‖ĨΦC(i− 1, 0)ΦTC(j − 1, 0)ĨT ‖
≤ ‖ΦC(i− 1, 0)‖‖ΦC(j − 1, 0)‖
= ‖Y −1ΦY CY −1(i− 1, 0)Y ‖

×‖Y −1ΦY CY −1(j − 1, 0)Y ‖
≤ (ε

√
Nnd)i+j−2 a.s., (78)

which combining (76) and (77) gives

∥∥∥E[{ k∑
i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
}

×
{ k∑
i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
}T ]∥∥∥

≤ (1 − ψ1)−2‖E[ΦF (k, 0)ΦTF (k, 0)]‖
×

∑
0≤i,j≤k

((1 − ψ1)−1ε
√
Nnd)i+j a.s.

Noting that (1 − ψ1)−1ε
√
Nnd < 1, we have

∑
0≤i,j<∞

((1 − ψ1)−1ε
√
Nnd)i+j < ∞. Hence, by Lemma C.1, it

follows that

lim
k→∞

∥∥∥E[{ k∑
i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
}

×
{ k∑
i=0

ΦF (k, i+ 1)ĨΦC(i− 1, 0)
}T ]∥∥∥ = 0.

Thus, the third term on the right side of (73) converges to zero.

By (77)-(78) and similarly to (76), it follows that

k+1∑
i=1

a2(i)
∥∥∥E[{ k∑

j=i

ΦF (k, j + 1)ĨΦC(j − 1, i)
}

×
{ k∑
j=i

ΦF (k, j + 1)ĨΦC(j − 1, i)
}T ]∥∥∥

=
k+1∑
i=1

a2(i)
∥∥∥ ∑
i≤j1,j2≤k

E[ΦF (k, j1 + 1)ĨΦC(j1 − 1, i)

×ΦTC(j2 − 1, i)ĨTΦTF (k, j2 + 1)]
∥∥∥

=
k+1∑
i=1

a2(i)
∥∥∥ ∑
i≤j1,j2≤k

E[ΦF (k, i)(ΦF (j1, i))−1Ĩ

×ΦC(j1 − 1, i)ΦTC(j2 − 1, i)ĨT (ΦTF (j2, i))−1

×ΦTF (k, i)]
∥∥∥

≤
k+1∑
i=1

a2(i)
∥∥∥ ∑
i≤j1,j2≤k

E[ΦF (k, i)‖(ΦF (j1, i))−1Ĩ

×ΦC(j1 − 1, i)ΦTC(j2 − 1, i)ĨT (ΦTF (j2, i))−1‖
×ΦTF (k, i)]

∥∥∥
≤

k+1∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖

×
∑

i≤j1,j2≤k
(1 − ψ1)−(j1+j2−2i+6)(ε

√
Nnd)j1+j2−2i

≤ (1 − ψ1)−6
k+1∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖

×
∑

i≤j1,j2≤k
((1 − ψ1)−1ε

√
Nnd)(j1+j2−2i)

= (1 − ψ1)−6
k+1∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖

×
[

1 − ((1 − ψ1)−1ε
√
Nnd)k−i+1

1 − (1 − ψ1)−1ε
√
Nnd

]2

≤ (1 − ψ1)−6

[1 − (1 − ψ1)−1ε
√
Nnd]2

×
k+1∑
i=1

a2(i)‖E[ΦF (k, i)ΦTF (k, i)]‖ a.s.

In the light of (74), the above converges to zero.
So far, we have proved that all the four terms on

the right side of (73) converge to zero. Thus, we have
limk→∞ ‖E(r(k + 1)rT (k + 1))‖ = 0, which, along with the
facts that E‖r(k)‖2 = E[Tr(r(k)rT (k))] = Tr[E(r(k)rT (k))]
and r(k) is equivalent to e(k), gives limk→∞ E‖e(k)‖2 = 0.
The proof is completed.

Proof of Corollary V.1: Following the lines in the proof
of Lemma V.1, it can be verified that under b(0) ≤
fC1,βa,βH ,N,d(ψ2), Assumption A2.b and Condition C1.a,
F (k) is invertible and ‖G(k)‖ ≤ ψ2 a.s., ∀k ≥ 0.
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Noting that F(mh − 1) ⊆ F(k − 1), k ≥ mh, by the
properties of the conditional expectation, we have

E[A(k, q)[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]
= E[E[A(k, q)
×[[ΦF (k − 1, k − q)]−1 − INn]|F(k − 1)]|F(mh− 1)]
= E[E[A(k, q)|F(k − 1)]
×[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]. (79)

Since {〈H(k),AG(k), λji(k), j, i ∈ V〉, k ≥ 0} is an indepen-
dent process, by Assumption A1.a, we know that A(k, q) is
independent of F(k− 1), q = 0, ..., d. Then, by (79), we have

E[A(k, q)[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]
= E[E[A(k, q)]
×[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]
= E[A(k, q)]
×E[[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)],
k = mh, ..., (m+ 1)h− 1, q = 0, ..., d. (80)

Let Gq(k) = INn − ΦF (k − 1, k − q), q = 0, ..., d.
Then, ΦF (k − 1, k − q) = INn − Gq(k). Noting that
‖G(k)‖ ≤ ψ2 < 2

1
d − 1, by the binomial expansion, we have

‖Gq(k)‖ = ‖INn− (INn −G(k− 1) · · · (INn−G(k− q)‖ ≤
[(1 + ψ2)q − 1] < 1. Hence, [ΦF (k − 1, k − q)]−1 =
(INn −Gq(k))−1 =

∑∞
i=0G

i

q(k). It follows that [ΦF (k − 1,
k − q)]−1 − INn =

∑∞
i=1G

i

q(k). Therefore,

‖[ΦF (k − 1, k − q)]−1 − INn‖

≤
∥∥∥ ∞∑
i=1

G
i

q(k)
∥∥∥ ≤

∞∑
i=1

[(1 + ψ2)q − 1]i

=
(1 + ψ2)q − 1
2 − (1 + ψ2)q

, q = 0, ..., d a.s. (81)

Noting that for any symmetric matrix B ∈ Rn×n,
B ≥ λmin(B)In, B ≤ ‖B‖In, and for any matrix B ∈ Rn×n,
‖B‖ = ‖BT ‖, by the definition of Λ

h

m, we have

(m+1)h−1∑
k=mh

(
b(k)E[L̂G(k)] ⊗ In + a(k)E[HT (k)H(k)]

−b(k)
2

[
d∑
q=0

E[A(k, q)]

×E[[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]

+
d∑
q=0

E[[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]T

×E[A
T
(k, q)]

])

≥ Λ
h

mINn −
∥∥∥∥∥

(m+1)h−1∑
k=mh

b(k)
d∑
q=0

E[A(k, q)]

×E[[ΦF (k − 1, k − q)]−1 − INn|F(mh− 1)]

∥∥∥∥∥INn.
(82)

By the above, (80), (81) and the definition of Λ̃hm, we have

Λ̃hm ≥ Λ
h

m −
∥∥∥∥∥

(m+1)h−1∑
k=mh

b(k)
d∑
q=0

E[A(k, q)]

×E[[ΦF (k − 1, k − q)]−1 − INn|F(mh− 1)]

∥∥∥∥∥
≥ Λ

h

m −
(m+1)h−1∑
k=mh

b(k)

×
d∑
q=0

‖E[A(k, q)]‖ (1 + ψ2)q − 1
2 − (1 + ψ2)q

≥ c(m)

where the last inequality follows by the condition (21).
Hence, Λ̃hm ≥ c(m). By Theorem V.1 and the conditions of
the corollary, the proof is completed.

Proof of Corollary V.2: We first prove the first part of the
corollary. Let c(m) = min{a((m+1)h), b((m+1)h)}. Since
{G(k), k ≥ 0} ∈ Γ1, we know that E[L̂G(k)|F(mh − 1] is
positive semi-definite, k ≥ mh. Then, by the definitions of
Λ
h

m and Λhm, we have

Λ
h

m ≥ c(m)Λhm. (83)

Then, noting that c(m) ≥ min{1, 1/C1}a((m+ 1)h), by the
definitions of C2 and C3, we have

b(mh) ≤ C2a(mh) ≤ C2(C3)ha((m+ 1)h)
≤ C2(C3)h max{1, C1}c(m). (84)

By the definitions of Λ̃hm and Σhm, (83) and (84), similar to
(82), we have

Λ̃hm

≥ Λ
h

m −
(m+1)h−1∑
k=mh

b(k)

(
d∑
q=0

‖E[A(k, q)

×([ΦF (k − 1, k − q)]−1 − INn)|F(mh− 1)]‖
)

≥ Λ
h

m − b(mh)
(m+1)h−1∑
k=mh

(
d∑
q=0

‖E[A(k, q)

×([ΦF (k − 1, k − q)]−1 − INn)|F(mh− 1)]‖
)

≥ c(m)Λhm − c(m)Σhm ≥ c(m)θ a.s.

where θ > 0 by the condition (22). By Conditions C1.a and
C1.b, similarly to (58)-(59), it follows that

∑∞
m=0 c(m) = ∞

and b2(mh) = o(c(m)). Then, the algorithm (7) converges in
mean square by Theorem V.1.

We next prove the second part of the corollary. Since
{〈H(k),AG(k), λji(k), j, i ∈ V〉, k ≥ 0} is an independent
process, by (80) and (81), we have

‖E[A(k, q)[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]‖
= ‖E[A(k, q)]
×E[[[ΦF (k − 1, k − q)]−1 − INn]|F(mh− 1)]‖
≤ ‖E[A(k, q)]‖ (1 + ψ2)q − 1

2 − (1 + ψ2)q
, q = 0, ..., d.
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Noting the definition of Σhm, we then have

Σhm ≤ C2(C3)h max{1, C1}

× sup
m≥0

(m+1)h−1∑
k=mh

(
d∑
q=0

‖E[A(k, q)]‖ (1 + ψ2)q − 1
2 − (1 + ψ2)q

)
.

By the above and the condition (23), we know that
infm≥0(Λhm − Σhm) ≥ θ where

θ � inf
m≥0

Λhm − C2(C3)h max{1, C1} sup
m≥0

(m+1)h−1∑
k=mh(

d∑
q=0

‖E[A(k, q)]‖ (1 + ψ2)q − 1
2 − (1 + ψ2)q

)
> 0.

Then, the proof is completed.
Proof of Corollary V.3: Following the lines of the proof

of Lemma V.1, it can be verified that by b(0) ≤
fC1,βa,βH ,N,d(ψ3), Assumption A2.b and Condition C1.a,
F (k) is invertible a.s. and ‖G(k)‖ ≤ ψ3 a.s., ∀k ≥ 0.

Let c(m) = min{a((m+1)h), b((m+1)h)}. Recalling the
definition of Σhm in Corollary V.2, by (83) and (84), we have

Λ̃hm ≥ Λ
h

m −
(m+1)h−1∑
k=mh

b(k)

(
d∑
q=0

‖E[A(k, q)

×([ΦF (k − 1, k − q)]−1 − INn)|F(mh− 1)]‖
)

≥ c(m)(Λhm − Σhm) ≥ c(m)(θ − Σhm), (85)

where the last inequality follows by infm≥0 Λhm ≥ θ a.s. We
next prove that θ− Σhm has a positive lower bound under the
conditions of the corollary.

By the definition of ψ3, similar to (81), we have

‖[ΦF (k − 1, k − q)]−1 − INn‖
≤ (1 + ψ3)q − 1

2 − (1 + ψ3)q
, q = 0, ..., d a.s.

By the above, we have

Σhm
C2(C3)h max{1, C1}

=
(m+1)h−1∑
k=mh

d∑
q=0

‖E[A(k, q)

×([ΦF (k − 1, k − q)]−1 − INn)|F(mh− 1)]‖

≤
(m+1)h−1∑
k=mh

d∑
q=0

E[‖A(k, q)‖

×‖[ΦF (k − 1, k − q)]−1 − INn‖|F(mh− 1)]

≤
(m+1)h−1∑
k=mh

d∑
q=0

E[‖A(k, q)‖|F(mh− 1)]

× (1 + ψ3)q − 1
2 − (1 + ψ3)q

≤ (1 + ψ3)d − 1
2 − (1 + ψ3)d

×
(m+1)h−1∑
k=mh

(
d∑
q=0

E[‖A(k, q)‖|F(mh− 1)]

)

≤ Nβadh
(1 + ψ3)d − 1
2 − (1 + ψ3)d

.

This together with

ψ3 <
(
1 +

θ

θ +NC2(C3)h max{1, C1}βadh
) 1
d − 1

gives

θ − Σhm

≥ θ −NC2(C3)h max{1, C1}βadh (1 + ψ3)d − 1
2 − (1 + ψ3)d

> 0.

Then, by (85), we have Λ̃hm ≥ c′(m), m ≥ 0, where

c′(m) = c(m)

[
θ −NC2(C3)h max{1, C1}βadh

× (1 + ψ3)d − 1
2 − (1 + ψ3)d

]
.

Similarly to (58)-(59), by Conditions C1.a and C1.b it is
known that

∑∞
m=0 c

′(m) = ∞ and b2(mh) = o(c′(m)). By
Theorem V.1, we get the conclusion of the corollary.

APPENDIX D
THE DETERMINISTIC OBSERVATION MATRICES

IN THE SIMULATION

H ′
1 = [H̃1,05×9], H ′

2 = [H̃2,07×5], H ′
3 = [06×4, H̃3],

H ′
4 = [04×7, H̃4], where

H̃1 =

⎛⎜⎜⎜⎜⎝
−1 0 0 0
0 0 0 −1
1 0 0 −1
−1 0 0 −1
−1 0 −1 3

⎞⎟⎟⎟⎟⎠ ,

H̃2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 −1 1 0
0 0 −1 0 0 1 0 0
0 1 −1 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 0 0 0 0 −1
0 0 1 0 0 1 0 −1
0 0 1 −1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

H̃3 =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0 −1 0 0
1 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 1 −1 0
−1 0 0 0 0 0 2 1 0
−1 0 0 0 0 0 −1 3 −1
0 0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

H̃4 =

⎛⎜⎜⎝
1 −1 0 0 0 0
1 0 0 0 0 −1
−1 0 0 0 −1 2
0 1 −1 0 0 0

⎞⎟⎟⎠ .
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